What is a completely integrable nonholonomic dynamical system?

被引:28
作者
Bates, L
Cushman, R
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1016/S0034-4877(99)80142-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare the geometry of a toral fibration defined by the common level sets of the integrals of a Liouville integrable Hamiltonian system with a toral fibration coming from a completely integrable nonholonomic system. We illustrate their differences using the following examples: the nonholonomic oscillator, Chaplygin's skate, Routh's sphere and the rolling oblate ellipsoid of revolution.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 19 条
[1]   Examples of singular nonholonomic reduction [J].
Bates, L .
REPORTS ON MATHEMATICAL PHYSICS, 1998, 42 (1-2) :231-247
[2]   You can't get there from here [J].
Bates, L .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1998, 8 (03) :273-274
[3]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[4]  
BATES L, 1989, P R SOC EDINBURGH A, V110, P837
[5]   Routh's sphere [J].
Cushman, R .
REPORTS ON MATHEMATICAL PHYSICS, 1998, 42 (1-2) :47-70
[6]  
CUSHMAN R, 1997, NONHAMILTONIAN MONOD
[7]  
CUSHMAN R, 1996, NONHAMILTONIAN MONOD
[8]  
Cushman R.H., 2015, Global Aspects of Classical Integrable Systems, V2nd ed.
[9]   ON GLOBAL ACTION-ANGLE COORDINATES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :687-706
[10]   NORMAL FORMS FOR HAMILTONIAN-SYSTEMS WITH POISSON COMMUTING INTEGRALS - ELLIPTIC CASE [J].
ELIASSON, LH .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :4-35