Deep Open-Set Segmentation in Visual Learning

被引:1
|
作者
Nunes, Ian M. [1 ]
Poggi, Marcus [1 ]
Oliveira, Hugo [2 ]
Pereira, Matheus B. [3 ]
dos Santos, Jefersson A. [4 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Informat, Rio de Janeiro, Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, Brazil
[4] Univ Stirling, Comp Sci & Math, Stirling, Scotland
来源
2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022) | 2022年
基金
巴西圣保罗研究基金会;
关键词
open-set; semantic segmentation; open-set recognition; open-set segmentation; deep learning; neural network;
D O I
10.1109/SIBGRAPI55357.2022.9991794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collecting samples that exhaust all possible classes for real-world tasks is usually hard or even impossible due to many different factors. In a realistic/feasible scenario, methods should be aware that the training data is incomplete and not all knowledge is available. In this scenario, in test time, developed methods should be able to identify the unknown samples while correctly executing the proposed task to the known classes. Open-Set Recognition and Semantic Segmentation models emerge to handle this sort of scenario for visual recognition and dense labeling tasks, respectively. In this work, we propose a novel taxonomy aiming to organize the literature and provide an understanding of the theoretical trends that guided the existing approaches which may influence future methods. Moreover, we also provide the first systematic review of open-set semantic segmentation methods.
引用
收藏
页码:314 / 319
页数:6
相关论文
共 50 条
  • [1] Open-set iris recognition based on deep learning
    Sun, Jie
    Zhao, Shipeng
    Miao, Sheng
    Wang, Xuan
    Yu, Yanan
    IET IMAGE PROCESSING, 2022, 16 (09) : 2361 - 2372
  • [2] Deep Active Learning via Open-Set Recognition
    Mandivarapu, Jaya Krishna
    Camp, Blake
    Estrada, Rolando
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [3] Open-set marine object instance segmentation with prototype learning
    Hu, Xing
    Li, Panlong
    Karimi, Hamid Reza
    Jiang, Linhua
    Zhang, Dawei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6055 - 6062
  • [4] Revisiting Open-Set Panoptic Segmentation
    Yin, Yufei
    Chen, Hao
    Zhou, Wengang
    Deng, Jiajun
    Xu, Haiming
    Li, Houqiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6747 - 6754
  • [5] A systematic review on open-set segmentation
    Nunes, Ian
    Laranjeira, Camila
    Oliveira, Hugo
    dos Santos, Jefersson A.
    COMPUTERS & GRAPHICS-UK, 2023, 115 : 296 - 308
  • [6] Open-Set Tattoo Semantic Segmentation
    Brilhador, Anderson
    da Silva, Rodrigo Tchalski
    Modinez-Junior, Carlos Roberto
    Spadafora, Gabriel de Almeida
    Lopes, Heitor Silverio
    Lazzaretti, Andre Eugenio
    IEEE ACCESS, 2024, 12 : 107181 - 107200
  • [7] Deep metric learning method for open-set iris recognition
    Huo, Guang
    Li, Ruyuan
    Lou, Jianlou
    Yu, Xiaolu
    Wang, Jiajun
    He, Xinlei
    Wang, Yue
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33016
  • [8] An Open-Set Modulation Recognition Scheme With Deep Representation Learning
    Chen, Yanghong
    Xu, Xiaodong
    Qin, Xiaowei
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (03) : 851 - 855
  • [9] Learning Bounds for Open-Set Learning
    Fang, Zhen
    Lu, Jie
    Liu, Anjin
    Liu, Feng
    Zhang, Guangquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] CONDITIONAL RECONSTRUCTION FOR OPEN-SET SEMANTIC SEGMENTATION
    Nunes, Ian
    Pereira, Matheus B.
    Oliveira, Hugo
    dos Santos, Jefersson A.
    Poggi, Marcus
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 946 - 950