GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC SCHRODINGER EQUATIONS WITH CRITICAL GROWTH

被引:0
作者
Zhang, Hui [1 ]
Xu, Junxiang [2 ]
Zhang, Fubao [2 ]
机构
[1] Jinling Inst Technol, Dept Math, Nanjing 211169, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically periodic Schrodinger equation; Nehari manifold; critical growth; ground state solution; NONTRIVIAL SOLUTION; ELLIPTIC-EQUATIONS; BOUND-STATES; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
引用
收藏
页数:16
相关论文
共 25 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]  
[Anonymous], 2007, INTERDISCIPLINARY MA
[3]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[6]   On a semilinear Schrodinger equation with critical Sobolev exponent [J].
Chabrowski, J ;
Szulkin, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) :85-93
[7]   Bound states for semilinear Schrodinger equations with sign-changing potential [J].
Ding, Yanheng ;
Szulkin, Andrzej .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) :397-419
[8]   Multiple solutions for a class of nonlinear Schrodinger equations [J].
Ding, YH ;
Luan, SX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) :423-457
[9]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[10]  
Kryszewski A., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849