Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard spaces

被引:11
作者
Uddin, Izhar [1 ]
Imdad, Mohammad [2 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2018年 / 47卷 / 06期
关键词
Hadamard spaces; Delta-convergence; APPROXIMATING FIXED-POINTS; THEOREMS;
D O I
10.15672/HJMS.2017.509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the convergence of SP-iteration scheme for a class of mappings satisfying the condition (C) and prove Delta-convergence as well as strong convergence theorems in Hadamard spaces. Our results generalize and improve several relevant results of the existing literature.
引用
收藏
页码:1595 / 1604
页数:10
相关论文
共 28 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]  
[Anonymous], 1999, METRIC SPACES NONPOS
[3]  
Berinde V, 2007, LECT NOTES MATH, V1912, P1
[4]  
Brown KS, 1989, Buildings
[5]  
Bruhat F., 1972, DONNEES RADICIELLES, V41
[6]  
Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
[7]  
Dhompongsa S, 2007, J NONLINEAR CONVEX A, V8, P35
[8]   Fixed points of uniformly lipschitzian mappings [J].
Dhompongsa, S. ;
Kirk, W. A. ;
Sims, Brailey .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :762-772
[9]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[10]  
Goebel K., 1984, UNIFORM CONVEXITY HY