A Multi-Cohort and Multi-Omics Meta-Analysis Framework to Identify Network-Based Gene Signatures

被引:19
作者
Shafi, Adib [1 ]
Nguyen, Tin [2 ]
Peyvandipour, Azam [1 ]
Nguyen, Hung [2 ]
Draghici, Sorin [1 ,3 ]
机构
[1] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
[2] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
[3] Wayne State Univ, Dept Obstet & Gynecol, Detroit, MI 48202 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
multi-cohort; multi-omics; meta-analysis; subnetwork identification; GBM; LGG; DNA METHYLATION; INTEGRATED ANALYSIS; TEMOZOLOMIDE RESISTANCE; EXPRESSION PROFILES; GENOMIC ANALYSIS; SYSTEMS BIOLOGY; DATABASE; PATHWAYS; SURVIVAL; CANCER;
D O I
10.3389/fgene.2019.00159
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although massive amounts of condition-specific molecular profiles are being accumulated in public repositories every day, meaningful interpretation of these data remains a major challenge. In an effort to identify the biomarkers that describe the key biological phenomena for a given condition, several approaches have been developed over the past few years. However, the majority of these approaches either (i) do not consider the known intermolecular interactions, or (ii) do not integrate molecular data of multiple types (e.g., genomics, transcriptomics, proteomics, epigenomics, etc.), and thus potentially fail to capture the true biological changes responsible for complex diseases (e.g., cancer). In addition, these approaches often ignore the heterogeneity and study bias present in independent molecular cohorts. In this manuscript, we propose a novel multi-cohort and multi-omics meta-analysis framework that overcomes all three limitations mentioned above in order to identify robust molecular subnetworks that capture the key dynamic nature of a given biological condition. Our framework integrates multiple independent gene expression studies, unmatched DNA methylation studies, and protein-protein interactions to identify methylation-driven subnetworks. We demonstrate the proposed framework by constructing subnetworks related to two complex diseases: glioblastoma and low-grade gliomas. We validate the identified subnetworks by showing their ability to predict patients' clinical outcome on multiple independent validation cohorts.
引用
收藏
页数:16
相关论文
共 114 条
  • [1] Advaita Corporation, 2019, PATHW AN IPATHWAYGUI
  • [2] Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification
    Alaimo, Salvatore
    Giugno, Rosalba
    Acunzo, Mario
    Veneziano, Dario
    Ferro, Alfredo
    Pulvirenti, Alfredo
    [J]. ONCOTARGET, 2016, 7 (34) : 54572 - 54582
  • [3] Detecting differential usage of exons from RNA-seq data
    Anders, Simon
    Reyes, Alejandro
    Huber, Wolfgang
    [J]. GENOME RESEARCH, 2012, 22 (10) : 2008 - 2017
  • [4] [Anonymous], 2001, The elements of statistical learning: data mining, inference, and prediction
  • [5] An approach to infer putative disease-specific mechanisms using neighboring gene networks
    Ansari, Sahar
    Donato, Michele
    Saberian, Nafiseh
    Draghici, Sorin
    [J]. BIOINFORMATICS, 2017, 33 (13) : 1987 - 1994
  • [6] A Fourteen Gene GBM Prognostic Signature Identifies Association of Immune Response Pathway and Mesenchymal Subtype with High Risk Group
    Arimappamagan, Arivazhagan
    Somasundaram, Kumaravel
    Thennarasu, Kandavel
    Peddagangannagari, Sreekanthreddy
    Srinivasan, Harish
    Shailaja, Bangalore C.
    Samuel, Cini
    Patric, Irene Rosita Pia
    Shukla, Sudhanshu
    Thota, Balaram
    Prasanna, Krishnarao Venkatesh
    Pandey, Paritosh
    Balasubramaniam, Anandh
    Santosh, Vani
    Chandramouli, Bangalore Ashwathnarayanara
    Hegde, Alangar Sathyaranjandas
    Kondaiah, Paturu
    Rao, Manchanahalli R. Sathyanarayana
    [J]. PLOS ONE, 2013, 8 (04):
  • [7] SOCS1 and SOCS3 in the control of CNS immunity
    Baker, Brandi J.
    Akhtar, Lisa Nowoslawski
    Benveniste, Etty N.
    [J]. TRENDS IN IMMUNOLOGY, 2009, 30 (08) : 392 - 400
  • [8] Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
  • [9] Computational solutions for omics data
    Berger, Bonnie
    Peng, Jian
    Singh, Mona
    [J]. NATURE REVIEWS GENETICS, 2013, 14 (05) : 333 - 346
  • [10] Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas
    Brat, Daniel J.
    Verhaak, Roel G. W.
    Al-dape, Kenneth D.
    Yung, W. K. Alfred
    Salama, Sofie R.
    Cooper, Lee A. D.
    Rheinbay, Esther
    Miller, C. Ryan
    Vitucci, Mark
    Morozova, Olena
    Robertson, A. Gordon
    Noushmehr, Houtan
    Laird, Peter W.
    Cherniack, Andrew D.
    Akbani, Rehan
    Huse, Jason T.
    Ciriello, Giovanni
    Poisson, Laila M.
    Barnholtz-Sloan, Jill S.
    Berger, Mitchel S.
    Brennan, Cameron
    Colen, Rivka R.
    Colman, Howard
    Flanders, Adam E.
    Giannini, Caterina
    Grifford, Mia
    Iavarone, Antonio
    Jain, Rajan
    Joseph, Isaac
    Kim, Jaegil
    Kasaian, Katayoon
    Mikkelsen, Tom
    Murray, Bradley A.
    O'Neill, Brian Patrick
    Pachter, Lior
    Parsons, Donald W.
    Sougnez, Carrie
    Sulman, Erik P.
    Vandenberg, Scott R.
    Van Meir, Erwin G.
    von Deimling, Andreas
    Zhang, Hailei
    Crain, Daniel
    Lau, Kevin
    Mallery, David
    Morris, Scott
    Paulauskis, Joseph
    Penny, Robert
    Shelton, Troy
    Sherman, Mark
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) : 2481 - 2498