Figure Tracking by Flies Is Supported by Parallel Visual Streams

被引:52
作者
Aptekar, Jacob W. [1 ]
Shoemaker, Patrick A. [2 ]
Fryel, Mark A. [1 ]
机构
[1] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA
[2] Tanner Res, Monrovia, CA 91016 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ORIENTATION BEHAVIOR; 2ND-ORDER MOTION; ILLUSORY MOTION; DROSOPHILA; FLY; RESPONSES; SYSTEM; DISCRIMINATION; PERCEPTION; MOVEMENT;
D O I
10.1016/j.cub.2012.01.044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Visual figures may be distinguished based on elementary motion or higher-order non-Fourier features, and flies track both [1]. The canonical elementary motion detector, a compact computation for Fourier motion direction and amplitude, can also encode higher-order signals provided elaborate preprocessing [2-4]. However, the way in which a fly tracks a moving figure containing both elementary and higher-order signals has not been investigated. Using a novel white noise approach, we demonstrate that (1) the composite response to an object containing both elementary motion (EM) and uncorrelated higher-order figure motion (FM) reflects the linear superposition of each component; (2) the EM-driven component is velocity-dependent, whereas the FM component is driven by retinal position; (3) retinotopic variation in EM and FM responses are different from one another; (4) the FM subsystem superimposes saccadic turns upon smooth pursuit; and (5) the two systems in combination are necessary and sufficient to predict the full range of figure tracking behaviors, including those that generate no EM cues at all [1]. This analysis requires an extension of the model that fly motion vision is based on simple elementary motion detectors [5] and provides a novel method to characterize the subsystems responsible for the pursuit of visual figures.
引用
收藏
页码:482 / 487
页数:6
相关论文
共 29 条
  • [1] PHENOMENAL COHERENCE OF MOVING VISUAL-PATTERNS
    ADELSON, EH
    MOVSHON, JA
    [J]. NATURE, 1982, 300 (5892) : 523 - 525
  • [2] Fly Motion Vision
    Borst, Alexander
    Haag, Juergen
    Reiff, Dierk F.
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, VOL 33, 2010, 33 : 49 - +
  • [3] Defining the Computational Structure of the Motion Detector in Drosophila
    Clark, Damon A.
    Bursztyn, Limor
    Horowitz, Mark A.
    Schnitzer, Mark J.
    Clandinin, Thomas R.
    [J]. NEURON, 2011, 70 (06) : 1165 - 1177
  • [4] The movement of motion-defined contours can bias perceived position
    Durant, Szonya
    Zanker, Johannes M.
    [J]. BIOLOGY LETTERS, 2009, 5 (02) : 270 - 273
  • [5] Internal Structure of the Fly Elementary Motion Detector
    Eichner, Hubert
    Joesch, Maximilian
    Schnell, Bettina
    Reiff, Dierk F.
    Borst, Alexander
    [J]. NEURON, 2011, 70 (06) : 1155 - 1164
  • [6] FLIGHT CONTROL IN DROSOPHILA BY VISUAL PERCEPTION OF MOTION
    GOTZ, KG
    [J]. KYBERNETIK, 1968, 4 (06): : 199 - +
  • [7] ILLUSORY MOTION IN VISUAL-DISPLAYS
    LELKENS, AMM
    KOENDERINK, JJ
    [J]. VISION RESEARCH, 1984, 24 (09) : 1083 - 1090
  • [8] Sexual dimorphism in the hoverfly motion vision pathway
    Nordstrom, Karin
    Barnett, Paul D.
    de Miguel, Irene M. Moyer
    Brinkworth, Russell S. A.
    O'Carroll, David C.
    [J]. CURRENT BIOLOGY, 2008, 18 (09) : 661 - 667
  • [9] Visual system of calliphorid flies: Motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli
    Okamura, Jun-Ya
    Strausfeld, Nicholas J.
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 2007, 500 (01) : 189 - 208
  • [10] VISUAL-PATTERN DISCRIMINATION AS AN ELEMENT OF FLYS ORIENTATION BEHAVIOR
    PICK, B
    [J]. BIOLOGICAL CYBERNETICS, 1976, 23 (03) : 171 - 180