STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models

被引:101
作者
Berger, Gilles [1 ,2 ,3 ]
Knelson, Erik H. [4 ]
Jimenez-Macias, Jorge L. [1 ]
Nowicki, Michal O. [1 ]
Han, Saemi [4 ]
Panagioti, Eleni [1 ]
Lizotte, Patrick H. [4 ,5 ]
Adu-Berchie, Kwasi [3 ]
Stafford, Alexander [3 ]
Dimitrakakis, Nikolaos [3 ]
Zhou, Lanlan [6 ,7 ]
Chiocca, E. Antonio [1 ]
Mooney, David J. [3 ,8 ]
Barbie, David A. [4 ]
Lawler, Sean E. [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Harvey Cushing Neurooncol Labs, Boston, MA 02115 USA
[2] Univ Libre Bruxelles, Fac Pharm, Microbiol Bioorgan & Macromol Chem, B-1050 Brussels, Belgium
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[4] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[5] Belfer Ctr Appl Canc Sci, Human Tumor Profiling Grp, Boston, MA 02115 USA
[6] Brown Univ, Legorreta Canc Ctr, Providence, RI 02912 USA
[7] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA
[8] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
STING; glioblastoma; immunotherapy; NK cells; CYCLIC GMP-AMP; I IFN SIGNALS; CHECKPOINT BLOCKADE; DNA SENSOR; INTERFERON; PATHWAY; CD8(+); BRAIN; IDENTIFICATION; IMMUNOTHERAPY;
D O I
10.1073/pnas.2111003119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.
引用
收藏
页数:12
相关论文
共 93 条
[1]   STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury [J].
Abdullah, Amar ;
Zhang, Moses ;
Frugier, Tony ;
Bedoui, Sammy ;
Taylor, Juliet M. ;
Crack, Peter J. .
JOURNAL OF NEUROINFLAMMATION, 2018, 15
[2]   Adult Glioblastoma [J].
Alexander, Brian M. ;
Cloughesy, Timothy F. .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (21) :2402-+
[3]  
AUSMAN JI, 1970, CANCER RES, V30, P2394
[4]   STING-dependent cytosolic DNA sensing pathways [J].
Barber, Glen N. .
TRENDS IN IMMUNOLOGY, 2014, 35 (02) :88-93
[5]  
Berger G., SERIES GSE206604
[6]   Pharmacological Modulation of the STING Pathway for Cancer Immunotherapy [J].
Berger, Gilles ;
Marloye, Mickael ;
Lawler, Sean E. .
TRENDS IN MOLECULAR MEDICINE, 2019, 25 (05) :412-427
[7]  
Boudreau C.E., 2021, CLIN CANCER RES, V27, P5528, DOI [DOI 10.1158/1078-0432.CCR-21-1914, 10.1158/1078-0432.CCR-21-1914]
[8]   Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency [J].
Bouffet, Eric ;
Larouche, Valerie ;
Campbell, Brittany B. ;
Merico, Daniele ;
de Borja, Richard ;
Aronson, Melyssa ;
Durno, Carol ;
Krueger, Joerg ;
Cabric, Vanja ;
Ramaswamy, Vijay ;
Zhukova, Nataliya ;
Mason, Gary ;
Farah, Roula ;
Afzal, Samina ;
Yalon, Michal ;
Rechavi, Gideon ;
Magimairajan, Vanan ;
Walsh, Michael F. ;
Constantini, Shlomi ;
Dvir, Rina ;
Elhasid, Ronit ;
Reddy, Alyssa ;
Osborn, Michael ;
Sullivan, Michael ;
Hansford, Jordan ;
Dodgshun, Andrew ;
Klauber-Demore, Nancy ;
Peterson, Lindsay ;
Patel, Sunil ;
Lindhorst, Scott ;
Atkinson, Jeffrey ;
Cohen, Zane ;
Laframboise, Rachel ;
Dirks, Peter ;
Taylor, Michael ;
Malkin, David ;
Albrecht, Steffen ;
Dudley, Roy W. R. ;
Jabado, Nada ;
Hawkins, Cynthia E. ;
Shlien, Adam ;
Tabori, Uri .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (19) :2206-+
[9]   Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J].
Bronte, Vincenzo ;
Brandau, Sven ;
Chen, Shu-Hsia ;
Colombo, Mario P. ;
Frey, Alan B. ;
Greten, Tim F. ;
Mandruzzato, Susanna ;
Murray, Peter J. ;
Ochoa, Augusto ;
Ostrand-Rosenberg, Suzanne ;
Rodriguez, Paulo C. ;
Sica, Antonio ;
Umansky, Viktor ;
Vonderheide, Robert H. ;
Gabrilovich, Dmitry I. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Immunotherapy of Primary Brain Tumors: Facts and Hopes [J].
Buerki, Robin A. ;
Chheda, Zinal S. ;
Okada, Hideho .
CLINICAL CANCER RESEARCH, 2018, 24 (21) :5198-5205