A Graph Polynomial for Independent Sets of Bipartite Graphs

被引:7
作者
Ge, Q. [1 ]
Stefankovic, D. [1 ]
机构
[1] Univ Rochester, Dept Comp Sci, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
COMPUTATIONAL-COMPLEXITY; SPARSE;
D O I
10.1017/S0963548312000296
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number of independent sets (# BIS). We analyse the complexity of exact evaluation of the polynomial at rational points and show a dichotomy result: for most points exact evaluation is # P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial.
引用
收藏
页码:695 / 714
页数:20
相关论文
共 36 条
[1]  
[Anonymous], FDN COMPUTING SERIES
[2]   A two-variable interlace polynomial [J].
Arratia, R ;
Bollobás, B ;
Sorkin, GB .
COMBINATORICA, 2004, 24 (04) :567-584
[3]  
Bläser M, 2008, STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, P97
[4]   Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth [J].
Blaeser, Markus ;
Hoffmann, Christian .
ALGORITHMICA, 2011, 61 (01) :3-35
[5]  
Boivin Jerome., 1989, Baxter
[6]  
Bordewich M, 2011, LECT NOTES COMPUT SC, V6755, P533, DOI 10.1007/978-3-642-22006-7_45
[7]   On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
DISCRETE APPLIED MATHEMATICS, 2001, 108 (1-2) :23-52
[8]  
Courcelle B, 2008, ELECTRON J COMB, V15
[9]   The relative complexity of approximate counting problems [J].
Dyer, M ;
Goldberg, LA ;
Greenhill, C ;
Jerrum, M .
ALGORITHMICA, 2004, 38 (03) :471-500
[10]   On counting independent sets in sparse graphs [J].
Dyer, M ;
Frieze, A ;
Jerrum, M .
SIAM JOURNAL ON COMPUTING, 2002, 31 (05) :1527-1541