A dynamical uncertainty principle in von Neumann algebras by operator monotone functions

被引:2
作者
Gibilisco, Paolo [1 ]
Isola, Tommaso [2 ]
机构
[1] Univ Roma Tor Vergata, Fac Econ, Dipartimento SEFEMEQ, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
uncertainty principle; operator monotone function; quantum Fisher information;
D O I
10.1007/s10955-008-9582-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Suppose that A(1),..., A(N) are observables (selfadjoint matrices) and rho is a state (density matrix). In this case the standard uncertainty principle, proved by Robertson, gives a bound for the quantum generalized variance, namely for det{Cov(rho) (A(j), A(k) )}, using the commutators [A(j), A(k)]; this bound is trivial when N is odd. Recently a different inequality of Robertson-type has been proved by the authors with the help of the theory of operator monotone functions. In this case the bound makes use of the commutators [rho, A(j)] and is non-trivial for any N. In the present paper we generalize this new result to the von Neumann algebra case. Nevertheless the proof appears to simplify all the existing ones.
引用
收藏
页码:937 / 944
页数:8
相关论文
共 30 条
[1]   Uncertainty principle with quantum Fisher information [J].
Andai, Attila .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (01)
[2]  
[Anonymous], 1996, MATRIX ANAL
[3]   Representations and properties of generalized Ar statistics, coherent states and Robertson uncertainty relations [J].
Daoud, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04) :889-901
[4]   Separability dynamics of two-mode Gaussian states in parametric conversion and amplification [J].
Dodonov, AV ;
Dodonov, VV ;
Mizrahi, SS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (03) :683-696
[5]  
GIBILISCO P, 2008, INT J MATH IN PRESS
[6]  
GIBILISCO P, 2007, ARXIV07121208V1
[7]   A Robertson-type uncertainty principle and quantum Fisher information [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1706-1724
[8]   Uncertainty principle for Wigner Yanase Dyson information in semifinite von Neumann algebras [J].
Gibilisco, Paolo ;
Isola, Tommaso .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (01) :127-133
[9]   Uncertainty principle and quantum fisher information. II. [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[10]   A volume inequality for quantum fisher information and the uncertainty principle [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (03) :545-559