FIXED POINT RESULTS FOR (α - β)-ADMISSIBLE ALMOST Z-CONTRACTIONS IN METRIC-LIKE SPACE VIA SIMULATION FUNCTION

被引:0
作者
Dewangan, Archana [1 ]
Dubey, Anil Kumar [2 ]
Mishra, Urmila [3 ]
Dubey, R. P. [1 ]
机构
[1] Dr CV Raman Univ, Dept Math, Kargi Rd, Bilaspur 495113, Chhattisgarh, India
[2] Bhilai Inst Technol, Dept Math, Bhilai House, Durg, Chhattisgarh, India
[3] Vishwavidyalaya Engn Coll, Dept Math, Ambikapur 497116, Chhattisgarh, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2022年 / 37卷 / 03期
关键词
fixed point; metric-like space; simulation function; MAPPINGS; THEOREM;
D O I
10.22190/FUMI210705037D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence and uniqueness of a fixed point of (alpha, beta)-admissible almost Z-contractions via simulation functions in metric-like spaces. Our results generalize and unify several fixed point theorem in literature.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 24 条
[1]   Fixed point results in metric-like spaces via σ-simulation functions [J].
Alsamir, Habes ;
Noorani, Mohd Selmi ;
Shatanawi, Wasfi ;
Aydi, Hassen ;
Akhadkulov, Habibulla ;
Qawaqneh, Haitham ;
Alanazi, Kareem .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (01) :88-100
[2]   Metric-like spaces, partial metric spaces and fixed points [J].
Amini-Harandi, A. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[3]  
[Anonymous], 2004, Nonlinear Anal. Forum
[4]  
Argoubi H, 2015, J NONLINEAR SCI APPL, V8, P1082
[5]   A NADLER-TYPE FIXED POINT THEOREM IN DISLOCATED SPACES AND APPLICATIONS [J].
Aydi, H. ;
Felhi, A. ;
Karapinar, Erdal ;
Sahmim, S. .
MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) :111-124
[6]  
Aydi H., 2015, ELECT J DIFFERENTIAL, V2015, P1
[7]   Fixed points of multivalued nonself almost contractions in metric-like spaces [J].
Aydi H. ;
Felhi A. ;
Sahmim S. .
Mathematical Sciences, 2015, 9 (2) :103-108
[8]  
Babu GVR, 2008, CARPATHIAN J MATH, V24, P8
[9]  
Banach S., 1922, Fundamenta mathematicae, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[10]  
Berinde V, 2008, CARPATHIAN J MATH, V24, P10