Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles

被引:75
作者
Lu, Jinshun [1 ]
Zhu, Weiyan [1 ]
Dai, Lin [1 ,2 ]
Si, Chuanling [1 ]
Ni, Yonghao [1 ,2 ]
机构
[1] Tianjin Univ Sci & Technol, Tianjin Key Lab Pulp & Paper, Tianjin 300457, Peoples R China
[2] Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, Canada
基金
中国国家自然科学基金;
关键词
Cellulose nanofibrils; Nanoparticles; Thermo-responsive hydrogel; pH-responsive hydrogel; Polymer-nanoparticle hydrogel; LIGNIN NANOPARTICLE; NANOCOMPOSITE; DYNAMICS; INSIGHT;
D O I
10.1016/j.carbpol.2019.03.100
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Cellulose nanofibrils (CNFs) have been widely used as the reinforcing agent. However, there is still a challenge to control the mechanical properties of CNFs-reinforced hydrogels by changing the environmental variables. Here, we demonstrated a thermo- and multi-pH-responsive CNFs-reinforced hydrogel containing lignin nanoparticles as the functional dynamic cross-linkers in the polymeric network. The elastic and viscous modulus of the hydrogel can be tailored: (i) the modulus increases upon increasing pH from 4 to 7, (ii) with pH further increasing from 7 to 9, the modulus decreases. The as prepared hydrogel also responded to the environment temperature, with the gelation at 26.4 degrees C. The significant differences in CNFs-reinforced hydrogel mechanics at various environment conditions are a direct result of the distinct stress-relaxation dynamics dictated by the dynamic hydrogen bonding and swelling/shrinking of lignin nanoparticles. This work also provides a new approach to design stimuli-responsive hydrogels.
引用
收藏
页码:289 / 295
页数:7
相关论文
共 39 条
[1]  
Abdul K. H. P. S., 2012, CARBOHYD POLYM, V87, P963, DOI DOI 10.1016/J.CARBP0L.2011.08.078
[2]   Self-assembled hydrogels utilizing polymer-nanoparticle interactions [J].
Appel, Eric A. ;
Tibbitt, Mark W. ;
Webber, Matthew J. ;
Mattix, Bradley A. ;
Veiseh, Omid ;
Langer, Robert .
NATURE COMMUNICATIONS, 2015, 6
[3]   Synthesis and linear viscoelasticity of fluorinated hydrophobically modified ethoxylated urethanes (F-HEUR) [J].
Cathebras, N ;
Collet, A ;
Viguier, M ;
Berret, JF .
MACROMOLECULES, 1998, 31 (04) :1305-1311
[4]   Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application [J].
Chen, Liheng ;
Zhou, Xiaoyan ;
Shi, Yunfeng ;
Gao, Bo ;
Wu, Jianping ;
Kirk, Thomas B. ;
Xu, Jiake ;
Xue, Wei .
CHEMICAL ENGINEERING JOURNAL, 2018, 346 :217-225
[5]   A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(L-lactide) [J].
Dai, Lin ;
Liu, Rui ;
Si, Chuanling .
GREEN CHEMISTRY, 2018, 20 (08) :1777-1783
[6]   Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol [J].
Dai, Lin ;
Liu, Rui ;
Hu, Li-Qiu ;
Zou, Zhu-Fan ;
Si, Chuan-Ling .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (09) :8241-8249
[7]   Freezing as a path to build complex composites [J].
Deville, S ;
Saiz, E ;
Nalla, RK ;
Tomsia, AP .
SCIENCE, 2006, 311 (5760) :515-518
[8]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33
[9]   Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Wata, Tadahisa ;
Kumamoto, Yoshiaki ;
Isogai, Akira .
BIOMACROMOLECULES, 2009, 10 (01) :162-165
[10]   Chain and Segmental Dynamics of Poly(2-vinylpyridine) Nanocomposites [J].
Holt, Adam P. ;
Sangoro, Joshua R. ;
Wang, Yangyang ;
Agapov, Alexander L. ;
Sokolov, Alexei P. .
MACROMOLECULES, 2013, 46 (10) :4168-4173