Multi-penalty regularization with a component-wise penalization

被引:20
作者
Naumova, V. [1 ]
Pereverzyev, S. V. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
ILL-POSED PROBLEMS; TOTAL VARIATION MINIMIZATION; TIKHONOV REGULARIZATION; HILBERT SCALES; CONVERGENCE; SATURATION;
D O I
10.1088/0266-5611/29/7/075002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a new regularization scheme for reconstructing the solution of a linear ill-posed operator equation from given noisy data in the Hilbert space setting. In this new scheme, the regularized approximation is decomposed into several components, which are defined by minimizing a multi-penalty functional. We show theoretically and numerically that under a proper choice of the regularization parameters, the regularized approximation exhibits the so-called compensatory property, in the sense that it performs similar to the best of the single-penalty regularization with the same penalizing operator.
引用
收藏
页数:15
相关论文
共 32 条
[1]  
[Anonymous], 2009, Cognitive Technologies
[2]   Comparing parameter choice methods for regularization of ill-posed problems [J].
Bauer, Frank ;
Lukas, Mark A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (09) :1795-1841
[3]   Efficient determination of multiple regularization parameters in a generalized L-curve framework [J].
Belge, M ;
Kilmer, ME ;
Miller, EL .
INVERSE PROBLEMS, 2002, 18 (04) :1161-1183
[4]  
Bottcher A., 2006, Appli- cable Analysis, V85, P555
[5]   Multi-parameter regularization techniques for ill-conditioned linear systems [J].
Brezinski, C ;
Redivo-Zaglia, M ;
Rodriguez, G ;
Seatzu, S .
NUMERISCHE MATHEMATIK, 2003, 94 (02) :203-228
[6]  
Chen ZY, 2008, J COMPUT MATH, V26, P37
[7]  
Hansen P. C., 1998, RANK DEFICIENT DISCR
[8]  
Hohage T, 2008, INVERSE PROBL IMAG, V2, P271
[9]  
Ito K, 2011, METHODS APPL ANAL, V18, P31
[10]  
Kindermann S, 2008, INVERSE PROBL IMAG, V2, P291