Entanglement witnesses from mutually unbiased bases

被引:24
作者
Chruscinski, Dariusz [1 ]
Sarbicki, Gniewomir [1 ]
Wudarski, Filip [1 ,2 ,3 ,4 ]
机构
[1] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Grudziadzka 5-7, PL-87100 Torun, Poland
[2] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, South Africa
[3] Univ KwaZulu Natal, Natl Inst Theoret Phys, ZA-4000 Durban, South Africa
[4] Univ Freiburg, Phys Inst, Herrmann Herder Str 3, D-79104 Freiburg, Germany
关键词
INDECOMPOSABLE POSITIVE MAPS; MATRIX ALGEBRAS; SEPARABILITY CRITERION; QUANTUM ENTANGLEMENT; STATES; GEOMETRY;
D O I
10.1103/PhysRevA.97.032318
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide a class of entanglement witnesses constructed in terms of mutually unbiased bases (MUBs). This construction reproduces many well-known examples such as the celebrated reduction map and the Choi map together with its generalizations. We illustrate our construction by a detailed analysis of the three-dimensional case: In this case, one obtains a family of entanglement witnesses parametrized by an L-dimensional torus (L = 2,3,4 being a number of MUBs used in the construction).
引用
收藏
页数:7
相关论文
共 59 条
[1]   The mean king's problem: Spin 1 [J].
Aharonov, Y ;
Englert, BG .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2) :16-19
[2]  
[Anonymous], 2017, Geometry of Quantum States: An Introduction to Quantum Entanglement, DOI DOI 10.1017/9781139207010
[3]  
[Anonymous], ARXIVQUANTPH0406175
[4]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[5]   A special simplex in the state space for entangled qudits [J].
Baumgartner, Bernhard ;
Hiesmayr, Beatrix ;
Narnhofer, Heide .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :7919-7938
[6]   Entanglement witnesses and geometry of entanglement of two-qutrit states [J].
Bertlmann, Reinhold A. ;
Krammer, Philipp .
ANNALS OF PHYSICS, 2009, 324 (07) :1388-1407
[7]   Geometric entanglement witnesses and bound entanglement [J].
Bertlmann, Reinhold A. ;
Krammer, Philipp .
PHYSICAL REVIEW A, 2008, 77 (02)
[8]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[9]  
Chen K, 2003, QUANTUM INF COMPUT, V3, P193
[10]   GENERALIZED CHOI MAPS IN 3-DIMENSIONAL MATRIX ALGEBRA [J].
CHO, SJ ;
KYE, SH ;
LEE, SG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 :213-224