Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics

被引:165
作者
Hussein, MI [1 ]
Hamza, K [1 ]
Hulbert, GM [1 ]
Scott, RA [1 ]
Saitou, K [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
periodic materials; phononic and photonic crystals; wave dispersion; band gap; stopband; passband; topology optimization; multiobjective genetic algorithms; vibration and shock isolation;
D O I
10.1007/s00158-005-0555-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An important dispersion-related characteristic of wave propagation through periodic materials is the existence of frequency bands. A medium effectively attenuates all incident waves within stopbands and allows propagation within passbands. The widths and locations of these bands in the frequency domain depend on the layout of contrasting materials and the ratio of their properties. Using a multiobjective genetic algorithm, the topologies of one-dimensional periodic unit cells are designed for target frequency band structures characterizing longitudinal wave motion. The decision variables are the number of layers in the unit cell and the thickness of each layer. Binary and mixed formulations are developed for the treatment of the optimization problems. Designs are generated for the following novel objectives: (1) maximum attenuation of time harmonic waves, (2) maximum isolation of general broadband pulses, and (3) filtering signals at predetermined frequency windows. The saturation of performance with the number of unit-cell layers is shown for the first two cases. In the filtering application, the trade-off between the simultaneous realization of passband and stop-band targets is analyzed. It is shown that it is more difficult to design for passbands than it is to design for stopbands. The design approach presented has potential use in the development of vibration and shock isolation structures, sound isolation pads/partitions, and multiple band frequency filters, among other applications.
引用
收藏
页码:60 / 75
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
Burger M, 2004, IEICE T ELECTRON, VE87C, P258
[3]   PLANE-WAVE PROPAGATION IN FINITE 2-2-COMPOSITES [J].
CAO, WW ;
QI, WK .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (07) :4627-4632
[4]   Maximizing band gaps in two-dimensional photonic crystals [J].
Cox, SJ ;
Dobson, DC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (06) :2108-2120
[5]   Band structure optimization of two-dimensional photonic crystals in H-polarization [J].
Cox, SJ ;
Dobson, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 158 (02) :214-224
[6]  
DAY NA, 1994, P REV PROGR QUANT A, V13, P243
[7]  
Deb K, 2000, LECT NOTES COMPUTER, V1917, DOI [10.1007/3-540-45356-3_83, DOI 10.1007/3-540-45356-3_83]
[8]  
Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms
[9]   BAND-STRUCTURE FOR THE PROPAGATION OF ELASTIC-WAVES IN SUPERLATTICES [J].
ESQUIVELSIRVENT, R ;
COCOLETZI, GH .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 95 (01) :86-90
[10]  
Floquet G., 1883, ANN SCI ECOLE NORM S, V12, P47, DOI [DOI 10.24033/ASENS.220, 10.24033/asens.220, 10.24033/asens.220/]