A definition of renormalized solutions for Boltzmann equation without cutoff

被引:12
作者
Alexandre, R [1 ]
机构
[1] Univ Orleans, Dept Math, MAPMO, UMR 6623, F-45067 Orleans, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 11期
关键词
D O I
10.1016/S0764-4442(99)80311-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a notion of renormalized solutions for 3D Boltzmann equation, and without assuming Grad's angular cutoff. Actually, we show that P.-L. Lions's recent hypothesis about velocity averages compacity of solutions is satisfied in this framework. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:987 / 991
页数:5
相关论文
共 20 条
[1]   On entropic dissipation rate without cutoff [J].
Alexandre, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03) :311-315
[2]   On 3D Boltzmann nonlinear operator without cutoff [J].
Alexandre, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :165-168
[3]   On 3D Boltzmann linear operator without cutoff [J].
Alexandre, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (09) :959-962
[4]  
ALEXANDRE R, UNPUB NONCUTOFF BOLT
[5]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[6]  
Carleman T., 1957, Problemes mathematiques dans la theorie cinetiquedes gaz
[7]  
CERCIGNANI C, 1994, SERIES APPL SCI, V106
[8]   ON THE FOKKER-PLANCK-BOLTZMANN EQUATION [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :1-23
[9]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[10]   COMPACTNESS IN BOLTZMANN-EQUATION VIA FOURIER INTEGRAL-OPERATORS AND APPLICATIONS .3. [J].
LIONS, PL .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1994, 34 (03) :539-584