Positive Solutions for Non-cooperative Singular p-Laplacian Systems

被引:4
作者
Hai, D. D. [1 ]
机构
[1] Mississippi State Univ, Mississippi State, MS 39762 USA
关键词
EXISTENCE;
D O I
10.3836/tjm/1358951321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of positive solutions for the p-Laplacian system [GRAPHICS] where Delta(p)u = div(vertical bar del u vertical bar(p-2)del u), p > 1, Omega is a bounded domain in R-n with smooth boundary partial derivative Omega, f(i) : (0, infinity) -> R are possibly singular at 0 and are not required to be positive or nondecreasing, and lambda is a large parameter.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1986, Qualitative Methods in Nonlinear Mechanics
[2]   Existence and a priori estimates for positive solutions of p-Laplace systems [J].
Azizieh, U ;
Clément, P ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :422-442
[3]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[4]   Existence of positive solutions for some problems with nonlinear diffusion [J].
Canada, A ;
Drabek, P ;
Gamez, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4231-4249
[5]   Existence of positive solutions for a nonvariational quasilinear elliptic system [J].
Clément, P ;
Fleckinger, J ;
Mitidieri, E ;
de Thélin, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :455-477
[6]   Lower and upper solutions for elliptic problems in nonsmooth domains [J].
De Coster, Colette ;
Nicaise, Serge .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (03) :599-629
[7]  
Giacomoni J, 2007, ANN SCUOLA NORM-SCI, V6, P117
[8]   On a class of singular p-Laplacian boundary value problems [J].
Hai, D. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) :619-626
[9]   Singular boundary value problems for the p-Laplacian [J].
Hai, D. D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) :2876-2881
[10]   On positive solutions for p-Laplacian systems with sign-changing nonlinearities [J].
Hai, Dang Dinh .
HOKKAIDO MATHEMATICAL JOURNAL, 2010, 39 (01) :67-84