Asymptotically optimal neighbor sum distinguishing total colorings of graphs

被引:20
作者
Loeb, Sarah [1 ]
Przybylo, Jakub [2 ]
Tang, Yunfang [3 ]
机构
[1] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[2] AGH Univ Sci & Technol, Al A Mickiewicza, PL-30059 Krakow, Poland
[3] China Jiliang Univ, Dept Math, Xueyuan Rd, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Neighbor sum distinguishing index; Neighbor sum distinguishing total coloring;
D O I
10.1016/j.disc.2016.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a proper total k-coloring c : V(G) boolean OR E(G) -> {1, 2,, k} of a graph G, we define the value of a vertex v to be c(v) + Sigma C-uv is an element of E(G)(uv) The smallest integer k such that G has a proper total k-coloring whose values form a proper coloring is the neighbor sum distinguishing total chromatic number of G, chi(Sigma)'' Pilgniak and Woiniak (2013) conjectured that chi(Sigma)''(G) <= Delta(G) + 3 for any simple graph with maximum degree Delta(G). In this paper, we prove this bound to be asymptotically correct by showing that chi(Sigma)''(G) <= Delta(G)(1+ o(1)). The main idea of our argument relies on Przybylo's proof (2014) regarding neighbor sum distinguishing edge-colorings. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 18 条
[1]  
Alon N., 2011, WILEY SERIES DISCRET
[2]  
[Anonymous], GRAPHS COMBIN
[3]  
[Anonymous], 2002, GRAPH COLOURINGS PRO
[4]  
[Anonymous], 1968, USPEKHIMAT NAUK
[5]  
Behzad Mehdi, 1965, THESIS
[6]  
Charollois G., 1988, Courrier de la Nature, P36
[7]  
Chartrand G., 1988, C NUMER, V64, P197
[8]   Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree [J].
Dong, Ai Jun ;
Wang, Guang Hui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) :703-709
[9]   Neighbor Sum Distinguishing Index [J].
Flandrin, Evelyne ;
Marczyk, Antoni ;
Przybylo, Jakub ;
Sacle, Jean-Francois ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2013, 29 (05) :1329-1336
[10]  
Gallagher J., 2015, Elon Journal of Undergraduate Research in Communications, V6, P1