Electrical impedance tomography by elastic deformation

被引:127
作者
Ammari, H. [1 ]
Bonnetier, E. [2 ]
Capdeboscq, Y. [3 ]
Tanter, M. [1 ]
Fink, M. [1 ]
机构
[1] ESPCI, CNRS, Lab Ondes & Acoust, UMR 7587, F-75231 Paris 05, France
[2] Univ Grenoble 1, Lab Modelisat & Calcul, F-38041 Grenoble 9, France
[3] Univ Versailles St Quentin, CNRS, LMV, Versailles, France
基金
英国工程与自然科学研究理事会;
关键词
electrical impedance tomography; elastic perturbation; asymptotic formula; reconstruction; substitution algorithm; 0-Laplacian;
D O I
10.1137/070686408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new algorithm for conductivity imaging. Our idea is to extract more information about the conductivity distribution from data that have been enriched by coupling impedance electrical measurements to localized elastic perturbations. Using asymptotics of the fields in the presence of small volume inclusions, we relate the pointwise values of the energy density to the measured data through a nonlinear PDE. Our algorithm is based on this PDE and takes full advantage of the enriched data. We give numerical examples that illustrate the performance and the accuracy of our approach.
引用
收藏
页码:1557 / 1573
页数:17
相关论文
共 43 条
[1]   Examples of instability in inverse boundary-value problems [J].
Alessandrini, G .
INVERSE PROBLEMS, 1997, 13 (04) :887-897
[2]   Univalent σ-harmonic mappings [J].
Alessandrini, G ;
Nesi, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (02) :155-171
[3]   LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ALESSANDRINI, G ;
ISAKOV, V ;
POWELL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3031-3041
[4]  
Alessandrini G., 1992, ANN SCUOLA NORM-SCI, V19, P567
[5]   Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium [J].
Alves, C ;
Ammari, H .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 62 (01) :94-106
[6]   T-Scan electrical impedance imaging system for anomaly detection [J].
Ammari, H ;
Kwon, O ;
Seo, JK ;
Woo, EJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) :252-266
[7]   Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities [J].
Ammari, H ;
Kang, HB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :190-208
[8]   Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion [J].
Ammari, H ;
Kang, H ;
Nakamura, G ;
Tanuma, K .
JOURNAL OF ELASTICITY, 2002, 67 (02) :97-129
[9]   High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter [J].
Ammari, H ;
Kang, HB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (05) :1152-1166
[10]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814