Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes

被引:98
作者
Barghi, Seyed Hamed [1 ]
Tsotsis, Theodore T. [1 ]
Sahimi, Muhammad [1 ]
机构
[1] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Hydrogen storage; Carbon nanotubes; Chemisorption; Physisorption; Hysteresis; HIGH-PRESSURE; ADSORPTION; WALL; TEMPERATURE; CAPACITY; SORPTION;
D O I
10.1016/j.ijhydene.2013.10.163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The question of chemisorption versus physisorption during hydrogen storage in carbon nanotubes (CNTs) is addressed experimentally. We utilize a powerful measurement technique based on a magnetic suspension balance coupled with a residual gas analyzer, and report new data for hydrogen sorption at pressures of up to 100 bar at 25 degrees C. The measured sorption capacity is less than 0.2 wt.%, and there is hysteresis in the sorption isotherms when multi-walled CNTs are exposed to hydrogen after pretreatment at elevated temperatures. The cause Of the hysteresis is then studied, and is shown to be due to a combination of weak sorption physisorption and strong sorption chemisorption in the CNTs. Analysis of the experimental data enables us to calculate separately the individual hydrogen physisorption and chemisorption isotherms in CNTs that, to our knowledge, are reported for the first time here. The maximum measured hydrogen physisorption and chemisorption are 0.13 wt.% and 0.058 wt.%, respectively. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1390 / 1397
页数:8
相关论文
共 33 条
[1]   Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4 [J].
Berseth, Polly A. ;
Harter, Andrew G. ;
Zidan, Ragaiy ;
Blomqvist, Andreas ;
Araujo, C. Moyses ;
Scheicher, Ralph H. ;
Ahuja, Rajeev ;
Jena, Puru .
NANO LETTERS, 2009, 9 (04) :1501-1505
[2]   Hydrogen Adsorption in Several Types of Carbon Nanotubes [J].
Bianco, S. ;
Giorcelli, M. ;
Musso, S. ;
Castellino, M. ;
Agresti, F. ;
Khandelwal, A. ;
Lo Russo, S. ;
Kumar, M. ;
Ando, Y. ;
Tagliaferro, A. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (06) :3860-3866
[3]   Chemisorption of Hydrogen by Carbon Nanotubes [J].
Bulyarskii, S. V. ;
Basaev, A. S. .
TECHNICAL PHYSICS, 2009, 54 (11) :1612-1617
[4]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[5]   Annealing amorphous carbon nanotubes for their application in hydrogen storage [J].
Ci, LJ ;
Zhu, HW ;
Wei, BQ ;
Xu, CL ;
Wu, DH .
APPLIED SURFACE SCIENCE, 2003, 205 (1-4) :39-43
[6]   Acceptability envelope for metal hydride-based hydrogen storage systems [J].
Corgnale, Claudio ;
Hardy, Bruce J. ;
Tamburello, David A. ;
Garrison, Stephen L. ;
Anton, Donald L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2812-2824
[7]   Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage [J].
Dimitrakakis, Georgios K. ;
Tylianakis, Emmanuel ;
Froudakis, George E. .
NANO LETTERS, 2008, 8 (10) :3166-3170
[8]   Molecular modeling study of hydrogen storage in carbon nanotubes [J].
Dodziuk, H ;
Dolgonos, G .
CHEMICAL PHYSICS LETTERS, 2002, 356 (1-2) :79-83
[9]   Hydrogen storage in microwave-treated multi-walled carbon nanotubes [J].
Geng, Hong-Zhang ;
Kim, Tae Hyung ;
Lim, Seong Chu ;
Jeong, Hae-Kyung ;
Jin, Mei Hua ;
Jo, Young Woo ;
Lee, Young Hee .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) :2073-2082
[10]   Hydrogen storage in carbon nanostructures [J].
Hirscher, M ;
Becher, M ;
Haluska, M ;
Quintel, A ;
Skakalova, V ;
Choi, YM ;
Dettlaff-Weglikowska, U ;
Roth, S ;
Stepanek, I ;
Bernier, P ;
Leonhardt, A ;
Fink, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 330 :654-658