A Modeling Method Based on Multiple Kernel Learning

被引:0
作者
Wang, Shuzhou [1 ]
Li, Lianhe [1 ]
Chen, Yimei [1 ]
机构
[1] Tianjin Polytech Univ, TianjinKeyLABofAEEET, Sch Elect Engn & Automat, Tianjin 300387, Peoples R China
来源
PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2012年
关键词
Multiple Kernel Learning; Support Vector Machine; Helicopter; Simulation Model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Support Vector Machine (SVM) can be applied to build simulation model of helicopter. But the parameter selection should to be done before training SVM. To avoid the problems, a dynamic modeling method for helicopter based on Multiple Kernel Learning (MKL) is proposed. It is shown by simulation that the dynamic MKL modeling method owns some advantages such as fast convergence speed, simple structure, whilst maintain the generalization precision.
引用
收藏
页码:2376 / 2378
页数:3
相关论文
共 12 条
[1]   Clifford Support Vector Machines for Classification, Regression, and Recurrence [J].
Bayro-Corrochano, Eduardo Jose ;
Arana-Daniel, Nancy .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (11) :1731-1746
[2]  
CAI Jinshi, 2002, SYSTEM IDENTIFICATIO
[3]   Additive support vector machines for pattern classification [J].
Doumpos, Michael ;
Zopounidis, Constantin ;
Golfinopoulou, Vassiliki .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (03) :540-550
[4]   Fuzzy regression analysis by support vector learning approach [J].
Hao, Pei-Yi ;
Chiang, Jung-Hsien .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (02) :428-441
[5]   Multiple Kernel Fuzzy Clustering [J].
Huang, Hsin-Chien ;
Chuang, Yung-Yu ;
Chen, Chu-Song .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (01) :120-134
[6]   A Framework for Multiple Kernel Support Vector Regression and Its Applications to siRNA Efficacy Prediction [J].
Qiu, Shibin ;
Lane, Terran .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2009, 6 (02) :190-199
[7]  
Rakotomamonjy A, 2008, J MACH LEARN RES, V9, P2491
[8]  
Steinwart I., 2011, J MACHINE LEARNING R, P41
[9]   Rigorous proof of termination of SMO algorithm for support vector machines [J].
Takahashi, N ;
Nishi, T .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (03) :774-776
[10]   Global convergence of SMO algorithm for support vector regression [J].
Takahashi, Norikazu ;
Guo, Jun ;
Nishi, Tetsuo .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (06) :971-982