Killer Whale Algorithm: An Algorithm Inspired by the Life of Killer Whale

被引:43
作者
Biyanto, Totok R. [1 ]
Matradji [1 ]
Irawan, Sonny [3 ]
Febrianto, Henokh Y. [4 ]
Afdanny, Naindar [1 ]
Rahman, Ahmad H. [1 ]
Gunawan, Kevin S. [1 ]
Pratama, Januar A. D. [1 ]
Bethiana, Titania N. [2 ]
机构
[1] Sepuluh Nopember Inst Technol, Dept Engn Phys, Surabaya 60111, Indonesia
[2] Sepuluh Nopember Inst Technol, Dept Chem Engn, Surabaya 60111, Indonesia
[3] Univ Teknol PETRONAS, Dept Petr Engn, Seri Iskandar, Malaysia
[4] Pusan Natl Univ, Dept Ind Engn, Busan, South Korea
来源
4TH INFORMATION SYSTEMS INTERNATIONAL CONFERENCE (ISICO 2017) | 2017年 / 124卷
关键词
Optimization; Killer Whale; Algorithm; Benchmark; OPTIMIZATION;
D O I
10.1016/j.procs.2017.12.141
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposed a new algorithm inspired by the life of Killer Whale. A group of Killer Whale called Matriline that consist of a leader and members. The leader's duty searches prey position and the optimum direction to chase the prey, meanwhile chase the prey is performed by the members. Optimum direction means minimum direction and maximum velocity. Global optimum is obtained by comparing the results of member's actions. In this algorithm, if value of objective function of members more than leader, hence the leader must find out another new potential prey. In order to obtain the performance of proposed algorithm, it is necessary to test the new algorithm together with other algorithm using known mathematical function that available in Comparing Continuous Optimizers (COCO) especially Black Box Optimization Benchmarking (BBOB). Optimization results show that the performances of purposed algorithm has outperformed than others algorithms such as Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Simulated Annealing (SA). (c) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2006, IEEE Comput. Intell. Mag., DOI [10.1109/MCI.2006.329691, DOI 10.1109/MCI.2006.329691]
[2]   Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha) [J].
Au, WWL ;
Ford, JKB ;
Horne, JK ;
Allman, KAN .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (02) :901-909
[3]  
Back T., 1996, EVOLUTIONARY ALGORIT, DOI DOI 10.1093/OSO/9780195099713.001.0001
[4]   Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms [J].
Biyanto, T. R. ;
Matradji ;
Syamsi, M. N. ;
Fibrianto, H. Y. ;
Afdanny, N. ;
Rahman, A. H. ;
Gunawan, K. S. ;
Pratama, J. A. D. ;
Malwindasari, A. ;
Abdillah, A. I. ;
Bethiana, T. N. ;
Putra, Y. A. .
INTERNATIONAL CONFERENCE OF APPLIED SCIENCE AND TECHNOLOGY FOR INFRASTRUCTURE ENGINEERING, 2017, 267
[5]  
Biyanto T. R., 2016, INT C SWARM INT BAL
[6]  
Gargari E. A., 2007, IEEE C EV COMP
[7]  
Goldberg DE., 1989, GENETIC ALGORITHMS S, V1
[8]  
Hansen Nikolaus, 2010, Real-parameter black-box optimization benchmarking 2010: Experimental setup
[9]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[10]   A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J].
Karaboga, Dervis ;
Basturk, Bahriye .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) :459-471