DYNAMICAL IONIZATION BOUNDS FOR ATOMS

被引:10
作者
Lenzmann, Enno [1 ]
Lewin, Mathieu [2 ]
机构
[1] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
[2] Univ Cergy Pontoise, Lab Math, CNRS, F-95000 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Hartree equation; RAGE theorem; ionization bound; positive commutator; MODIFIED WAVE-OPERATORS; LONG-RANGE SCATTERING; THOMAS-FERMI-VONWEIZSACKER; HARTREE-FOCK EQUATIONS; HIGHLY NEGATIVE-IONS; NONLINEAR SCHRODINGER; ASYMPTOTIC-BEHAVIOR; TIME DECAY; POTENTIAL-SCATTERING; CAUCHY-PROBLEM;
D O I
10.2140/apde.2013.6.1183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of the 3-dimensional repulsive nonlinear Hartree equation with an external attractive Coulomb potential Z = /vertical bar x vertical bar, which is a nonlinear model for the quantum dynamics of an atom. We show that, after a sufficiently long time, the average number of electrons in any finite ball is always smaller than 4Z (2Z in the radial case). This is a time-dependent generalization of a celebrated result by E.H. Lieb on the maximum negative ionization of atoms in the stationary case. Our proof involves a novel positive commutator argument (based on the cubic weight vertical bar x vertical bar(3)) and our findings are reminiscent of the RAGE theorem. In addition, we prove a similar universal bound on the local kinetic energy. In particular, our main result means that, in a weak sense, any solution is attracted to a bounded set in the energy space, whatever the size of the initial datum. Moreover, we extend our main result to Hartree-Fock theory and to the linear many-body Schrodinger equation for atoms.
引用
收藏
页码:1183 / 1211
页数:29
相关论文
共 68 条
[1]  
AMREIN WO, 1974, HELV PHYS ACTA, V46, P635
[2]   GENERALIZED HARTREE-FOCK THEORY AND THE HUBBARD-MODEL [J].
BACH, V ;
LIEB, EH ;
SOLOVEJ, JP .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :3-89
[4]  
Bardos C., 2000, Methods Appl. Anal., V7, P275
[5]   ON THOMAS-FERMI-VONWEIZSACKER AND HARTREE ENERGIES AS FUNCTIONS OF THE DEGREE OF IONIZATION [J].
BAUMGARTNER, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (08) :1593-1602
[6]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[7]   PROOF OF THE STABILITY OF HIGHLY NEGATIVE-IONS IN THE ABSENCE OF THE PAULI PRINCIPLE [J].
BENGURIA, R ;
LIEB, EH .
PHYSICAL REVIEW LETTERS, 1983, 50 (22) :1771-1774
[8]  
Benguria R., 1979, The von Weizsacker and exchange corrections in the Thomas-Fermi theory
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[10]   HARTREE-FOCK TIME-DEPENDENT PROBLEM [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) :25-33