A Joint Graph and Image Convolution Network for Automatic Brain Tumor Segmentation

被引:6
作者
Saueressig, Camillo [1 ,2 ]
Berkley, Adam [1 ]
Munbodh, Reshma [3 ]
Singh, Ritambhara [1 ,2 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[2] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[3] Brown Alpert Med Sch, Dept Radiat Oncol, Providence, RI 02903 USA
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I | 2022年 / 12962卷
关键词
Graph neural networks; Brain tumor segmentation; Deep learning;
D O I
10.1007/978-3-031-08999-2_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a joint graph convolution - image convolution neural network as our submission to the Brain Tumor Segmentation (BraTS) 2021 challenge. We model each brain as a graph composed of distinct image regions, which is initially segmented by a graph neural network (GNN). Subsequently, the tumorous volume identified by the GNN is further refined by a simple (voxel) convolutional neural network (CNN), which produces the final segmentation. This approach captures both global brain feature interactions via the graphical representation and local image details through the use of convolutional filters. We find that the GNN component by itself can effectively identify and segment the brain tumors. The addition of the CNN further improves the median performance of the model on the validation set by 2% across all metrics evaluated.
引用
收藏
页码:356 / 365
页数:10
相关论文
共 14 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv:2107.02314]
[3]  
Bakas S., 2017, NAT SCI DATA, V4, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
[4]  
Bakas S., 2017, The Cancer Imaging Archive, V286, DOI DOI 10.7937/K9/TCIA.2017.GJQ7R0EF
[5]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[6]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[7]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[8]  
Hamilton WL, 2017, ADV NEUR IN, V30
[9]  
Intisar Rizwan I. Haque, 2020, Informatics in Medicine Unlocked, V18, DOI 10.1016/j.imu.2020.100297
[10]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444