On conflict-free connection of graphs

被引:15
作者
Chang, Hong [1 ,2 ]
Huang, Zhong [1 ,2 ]
Li, Xueliang [1 ,2 ,3 ]
Mao, Yaping [3 ]
Zhao, Haixing [3 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
关键词
Edge-coloring; Connectivity; Conflict-free connection number; Nordhaus-Gaddum-type result; NORDHAUS-GADDUM INEQUALITIES; FREE COLORINGS; UNIQUE-MAXIMUM; THEOREM; REGIONS;
D O I
10.1016/j.dam.2018.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge-colored graph G is conflict-free connected if, between each pair of distinct vertices of G, there exists a path in G containing a color used on exactly one of its edges. The conflict-free connection number of a connected graph G, denoted by cfc(G), is defined as the minimum number of colors that are required in order to make G conflict-free connected. In this paper, we firstly determine all trees T of order n for which cfc(T) = n - t, where t >= 1 and n >= 2t + 2. Secondly, we prove that let G be a graph of order n, then 1 <= cfc(G) <= n - 1, and characterize the graphs G with cfc(G) = 1, n - 4, n - 3, n - 2, n - 1, respectively. Finally, we get the Nordhaus-Gaddum-type result for the conflict-free connection number of graphs, and prove that if G and G are connected graphs of order n (n >= 4), then 4 <= cfc(G) + cfc((G) over bar) <= n and 4 <= cfc(G) . cfc((G) over bar) <= 2(n - 2), moreover, cfc(G) + cfc((G) over bar) = n or cfc(G) . cfc((G) over bar) = 2(n - 2) if and only if one of G and (G) over bar is a tree with maximum degree n - 2 or a path of order 5, and the lower bounds are sharp. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 31 条
  • [1] AKIYAMA J, 1979, J MATH MATH SCI, V2, P223
  • [2] A survey of Nordhaus-Gaddum type relations
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 466 - 546
  • [3] Deterministic Conflict-Free Coloring for Intervals: From Offline to Online
    Bar-Noy, Amotz
    Cheilaris, Panagiotis
    Smorodinsky, Shakhar
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
  • [4] Bondy J. A, 2008, GTM, V244
  • [5] Chang H., ARXIV170701634V2MATH
  • [6] UNIQUE-MAXIMUM AND CONFLICT-FREE COLORING FOR HYPERGRAPHS AND TREE GRAPHS
    Cheilaris, Panagiotis
    Keszegh, Balazs
    Palvoelgyi, Doemoetoer
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1775 - 1787
  • [7] Graph unique-maximum and conflict-free colorings
    Cheilaris, Panagiotis
    Toth, Geza
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 241 - 251
  • [8] Online conflict-free coloring for intervals
    Chen, Ke
    Fiat, Amos
    Kaplan, Haim
    Levy, Meital
    Matousek, Jiri
    Mossel, Elchanan
    Pach, Janos
    Sharir, Micha
    Smorodinsky, Shakhar
    Wagner, Uli
    Welzl, Emo
    [J]. SIAM JOURNAL ON COMPUTING, 2006, 36 (05) : 1342 - 1359
  • [9] Nordhaus-Gaddum-Type Theorem for Rainbow Connection Number of Graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1235 - 1247
  • [10] CONFLICT-FREE CONNECTIONS OF GRAPHS
    Czap, Julius
    Jendrol, Stanislav
    Valiska, Juraj
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 911 - 920