Decidual Vasculopathy Identification in Whole Slide Images Using Multiresolution Hierarchical Convolutional Neural Networks

被引:20
作者
Clymer, Daniel [1 ]
Kostadinov, Stefan [2 ]
Catov, Janet [3 ,4 ,5 ]
Skvarca, Lauren [3 ,4 ,5 ]
Pantanowitz, Liron [6 ]
Cagan, Jonathan [1 ]
LeDuc, Philip [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Magee Womens Hosp, Dept Pathol, Med Ctr UPMC, Pittsburgh, PA USA
[3] Univ Pittsburgh, Magee Womens Hosp, Dept Obstet, Med Ctr UPMC, Pittsburgh, PA USA
[4] Univ Pittsburgh, Magee Womens Hosp, Dept Gynecol, Med Ctr UPMC, Pittsburgh, PA USA
[5] Univ Pittsburgh, Magee Womens Hosp, Dept Reprod Sci, Med Ctr UPMC, Pittsburgh, PA USA
[6] UPMC Shadyside Hosp, Dept Pathol, Pittsburgh, PA USA
基金
美国安德鲁·梅隆基金会;
关键词
PATHOLOGICAL EXAMINATION; PLACENTA; HYPERTENSION;
D O I
10.1016/j.ajpath.2020.06.014
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
After a child is born, the examination of the placenta by a pathologist for abnormalities, such as infection or maternal vascular malperfusion, can provide important information about the immediate and long-term health of the infant. Detection of the pathologic placental blood vessel lesion decidual vasculopathy (DV) has been shown to predict adverse pregnancy outcomes, such as preeclampsia, which can lead to mother and neonatal morbidity in subsequent pregnancies. However, because of the high volume of deliveries at large hospitals and limited resources, currently a large proportion of delivered placentas are discarded without inspection. Furthermore, the correct diagnosis of DV often requires the expertise of an experienced perinatal pathologist. We introduce a hierarchical machine learning approach for the automated detection and classification of DV lesions in digitized placenta slides, along with a method of coupling learned image features with patient metadata to predict the presence of DV. Ultimately, the approach will allow many more placentas to be screened in a more standardized manner, providing feedback about which cases would benefit most from more in-depth pathologic inspection. Such computer-assisted examination of human placentas will enable real-time adjustment to infant and maternal care and possible chemoprevention (eg, aspirin therapy) to prevent preeclampsia, a disease that affects 2% to 8% of pregnancies worldwide, in women identified to be at risk with future pregnancies.
引用
收藏
页码:2111 / 2122
页数:12
相关论文
共 45 条
[1]  
[Anonymous], 2015, ARXIV14126980V9
[2]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[3]   Evaluating reproducibility of AI algorithms in digital pathology with DAPPER [J].
Bizzego, Andrea ;
Bussola, Nicole ;
Chierici, Marco ;
Maggio, Valerio ;
Francescatto, Margherita ;
Cima, Luca ;
Cristoforetti, Marco ;
Jurman, Giuseppe ;
Furlanello, Cesare .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)
[4]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[5]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[6]   Pathologic examination of the placenta and observed practice [J].
Curtin, William M. ;
Krauss, Sarah ;
Metlay, Leon A. ;
Katzman, Philip J. .
OBSTETRICS AND GYNECOLOGY, 2007, 109 (01) :35-41
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   The VIA Annotation Software for Images, Audio and Video [J].
Dutta, Abhishek ;
Zisserman, Andrew .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2276-2279
[9]   Gestational Hypertension and Preeclampsia [J].
Espinoza, Jimmy ;
Vidaeff, Alex ;
Pettker, Christian M. ;
Simhan, Hyagriv .
OBSTETRICS AND GYNECOLOGY, 2019, 133 (01) :E1-E25
[10]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874