New simple Virasoro modules from Weyl algebra modules

被引:3
作者
Li, Shujuan [1 ]
Qin, Mengyao [1 ]
Guo, Xiangqian [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
关键词
Virasoro algebra; Weyl algebra; Irreducible modules; IRREDUCIBLE REPRESENTATIONS; WEIGHT MODULES; LIE-ALGEBRA; CLASSIFICATION; FAMILY; SUBALGEBRAS; FINITE;
D O I
10.1016/j.jalgebra.2022.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a class of modules N(P, V) over the Virasoro algebra from modules P over the degree-1 Weyl algebra K and modules V over the positive part of the Virasoro algebra. This generalizes a construction in [22] and provides a unified description of many known examples of Virasoro modules, for example, in [24,22,3,23]. We obtain the necessary and sufficient conditions for N(P, V) to be simple and also determine the isomorphism class of these modules. At the end of the paper, we compare the modules N(P, V) with other known simple Virasoro modules, concluding that they are new simple modules in general. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:619 / 641
页数:23
相关论文
共 39 条
  • [1] BAVULA V. V., 1993, ALGEBRA ANALIZ, V4, P71
  • [3] Chen H. X., arXiv
  • [4] A CLASS OF SIMPLE NON-WEIGHT MODULES OVER THE VIRASORO ALGEBRA
    Chen, Haibo
    Han, Jianzhi
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (04) : 956 - 970
  • [5] A new family of modules over the Virasoro algebra
    Chen, Hongjia
    Guo, Xiangqian
    [J]. JOURNAL OF ALGEBRA, 2016, 457 : 73 - 105
  • [6] Tensor product weight modules over the Virasoro algebra
    Chen, Hongjia
    Guo, Xiangqian
    Zhao, Kaiming
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 829 - 844
  • [7] A family of irreducible representations of the Witt Lie algebra with infinite-dimensional weight spaces
    Conley, CH
    Martin, C
    [J]. COMPOSITIO MATHEMATICA, 2001, 128 (02) : 153 - 175
  • [8] Di Francesco P., 1997, CONFORMAL FIELD THEO, DOI [10.1007/978-1-4612-2256-9, DOI 10.1007/978-1-4612-2256-9]
  • [9] Dixmier J., 1996, ENVELOPING ALGEBRAS, V11
  • [10] FEIGIN BL, 1983, FUNCT ANAL APPL+, V17, P241