Universal realisators for homology classes

被引:15
作者
Gaifullin, Alexander [1 ,2 ,3 ]
机构
[1] VA Steklov Math Inst, Dept Geometry & Topol, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Kharkevich Inst, Moscow 101447, Russia
关键词
MANIFOLDS;
D O I
10.2140/gt.2013.17.1745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study oriented closed manifolds M-n possessing the following Universal Realisation of Cycles (URC) Property: For each topological space X and each homology class z is an element of H-n(X, Z), there exists a finite-sheeted covering (M) over cap (n) -> M-n and a continuous mapping f: (M) over cap (n) -> X such that f(*)[(M) over cap (n)] = kz for a non-zero integer k. We find a wide class of examples of such manifolds M-n among so-called small covers of simple polytopes. In particular, we find 4-dimensional hyperbolic manifolds possessing the URC property. As a consequence, we obtain that for each 4-dimensional oriented closed manifold N-4, there exists a mapping of non-zero degree of a hyperbolic manifold M-4 to N-4. This was earlier conjectured by Kotschick and Loh.
引用
收藏
页码:1745 / 1772
页数:28
相关论文
共 28 条
[1]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[2]  
BROOKS R, 1985, J REINE ANGEW MATH, V362, P87
[3]  
Buchstaber V. M., 2002, U LECT SERIES, V24, DOI [10.1090/ulect/024, DOI 10.1090/ULECT/024]
[4]  
CARLSON JA, 1989, PUBL MATH-PARIS, V69, P173
[5]   STRICT HYPERBOLIZATION [J].
CHARNEY, RM ;
DAVIS, MW .
TOPOLOGY, 1995, 34 (02) :329-350
[6]  
Davis MichaelW., 2002, Handbook of geometric topology, P373
[8]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451
[9]  
DAVIS MW, 1991, J DIFFER GEOM, V34, P347
[10]   SOME ASPHERICAL MANIFOLDS [J].
DAVIS, MW .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (01) :105-139