Correction of eigenvalues estimated by the Legendre-Gauss Tau method

被引:0
|
作者
El-Daou, Mohamed K. [1 ]
Al Enezi, Suad Sh. [1 ]
Mekkaoui, Mona M. [1 ]
机构
[1] Coll Technol Studies, Dept Appl Sci, Shuwaikh B 70453, Kuwait
关键词
Eigenvalues problems; Legendre polynomials; Tau method; RUNGE-KUTTA METHODS; NUMERICAL-SOLUTION; LIOUVILLE; APPROXIMATIONS; ORDER;
D O I
10.1007/s11075-012-9660-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the accuracy in estimating a large number of eigenvalues deteriorates when the standard numerical methods are applied, because of the sharp oscillatory behavior of the corresponding eigenfunctions. One method which has proved to be efficient in treating such problems is the Legendre-Gauss Tau method. In this paper we present an exponentially fitted version of this method and we develop practical formulae to correct the estimated eigenvalues.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 50 条