Modified Multiobjective Evolutionary Algorithm Based on Decomposition for Antenna Design

被引:38
作者
Ding, Dawei [1 ]
Wang, Gang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Key Lab Electromagnet Space Informat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Bow-tie antenna; evolutionary algorithm; multi-band antenna; multiobjective optimization; GENETIC ALGORITHM; OPTIMIZATION;
D O I
10.1109/TAP.2013.2272754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For antenna design with multiobjective evolutionary algorithm based on decomposition (MOEA/D), population diversity and evolution speed of MOEA/D are two major concerns. Population diversity can be improved by selecting father- individuals along different search directions from external populations sorted by nondominated sorting strategy at small expense of evolution speed. Optimization results of given test instances and a tri-band bow-tie antenna indicate that the modified MOEA/D could generate a large set of alternative solutions in a more efficient way if compared to original MOEA/D. The modified MOEA/D is further demonstrated by designing a quad-band double-sided bow-tie antenna. Both numerical and test results show that modified MOEA/D is a promising multiobjective evolutionary algorithm for antenna design.
引用
收藏
页码:5301 / 5307
页数:8
相关论文
共 17 条
[1]   A Multi-Objective Evolutionary Algorithm Based on Decomposition for Optimal Design of Yagi-Uda Antennas [J].
Carvalho, R. ;
Saldanha, R. R. ;
Gomes, B. N. ;
Lisboa, A. C. ;
Martins, A. X. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) :803-806
[2]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]   Self-adaptive genetic algorithms with simulated binary crossover [J].
Deb, K ;
Beyer, HG .
EVOLUTIONARY COMPUTATION, 2001, 9 (02) :197-221
[5]  
Ding DW, 2011, LECT NOTES COMPUT SC, V7030, P383, DOI 10.1007/978-3-642-25255-6_49
[6]   A multi-objective genetic local search algorithm and its application to flowshop scheduling [J].
Ishibuchi, H ;
Murata, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (03) :392-403
[7]   Evolutionary Many-Objective Optimization by NSGA-II and MOEA/D with Large Populations [J].
Ishibuchi, Hisao ;
Sakane, Yuji ;
Tsukamoto, Noritaka ;
Nojima, Yusuke .
2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, :1758-1763
[8]   Design and analysis of planar monopole antennas using a genetic algorithm approach [J].
Kerkhoff, AJ ;
Rogers, RL ;
Hao, L .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (10) :2709-2718
[9]   Automobile conformal antenna design using non-dominated sorting genetic algorithm (NSGA) [J].
Kim, Y. ;
Walton, E. K. .
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2006, 153 (06) :579-582
[10]   Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II [J].
Li, Hui ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :284-302