Investigation of Void Fraction Schemes for Use with CFD-DEM Simulations of Fluidized Beds

被引:117
作者
Clarke, Daniel A. [1 ]
Sederman, Andrew J. [2 ]
Gladden, Lynn F. [2 ]
Holland, Daniel J. [1 ]
机构
[1] Univ Canterbury, Dept Chem & Proc Engn, Private Bag 4800, Christchurch 8140, New Zealand
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge Univ West Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
关键词
DISCRETE ELEMENT MODEL; MAGNETIC-RESONANCE MEASUREMENTS; GRANULAR-MATERIALS; VALIDATION; MFIX; SUSPENSIONS; SOFTWARE; SPHERES; VOLUME; FORCE;
D O I
10.1021/acs.iecr.7b04638
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper investigates the spatial resolution of computational fluid dynamics-discrete element method (CFD-DEM) simulations of a bubbling fluidized bed for seven different void fraction schemes. Fluid grids with cell sizes of 3.5, 1.6, and 1.3 particle diameters were compared. The particle velocity maps from all of the void fraction schemes were in good qualitative agreement with the experimental data collected using magnetic resonance imaging (MRI). Refining the fluid grid improved the quantitative agreement due to a more accurate representation of flow near the gas distributor. The approach proposed by Khawaja et al. [J. Comput. Multiphase Flows 2012, 4, 183-192] provided the closest match to the exact void fraction though only the particle centered method differed significantly. These results indicate that the fluid grid used for CFD-DEM simulations must be sufficiently fine to represent the inlet flow realistically and that a void fraction scheme such as that proposed by Khawaja be used.
引用
收藏
页码:3002 / 3013
页数:12
相关论文
共 43 条
[1]   A FLUID MECHANICAL DESCRIPTION OF FLUIDIZED BEDS [J].
ANDERSON, TB ;
JACKSON, R .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1967, 6 (04) :527-&
[2]   Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres [J].
Beetstra, R. ;
van der Hoef, M. A. ;
Kuipers, J. A. M. .
AICHE JOURNAL, 2007, 53 (02) :489-501
[3]   Effective particle diameters for simulating fluidization of non-spherical particles: CFD-DEM models vs. MRI measurements [J].
Boyce, C. M. ;
Ozel, A. ;
Rice, N. P. ;
Rubinstein, G. J. ;
Holland, D. J. ;
Sundaresan, S. .
AICHE JOURNAL, 2017, 63 (07) :2555-2568
[4]   Limitations on Fluid Grid Sizing for Using Volume-Averaged Fluid Equations in Discrete Element Models of Fluidized Beds [J].
Boyce, Christopher M. ;
Holland, Daniel J. ;
Scott, Stuart A. ;
Dennis, J. S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (43) :10684-10697
[5]   Novel fluid grid and voidage calculation techniques for a discrete element model of a 3D cylindrical fluidized bed [J].
Boyce, Christopher M. ;
Holland, Daniel J. ;
Scott, Stuart A. ;
Dennis, John S. .
COMPUTERS & CHEMICAL ENGINEERING, 2014, 65 :18-27
[6]   Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed [J].
Boyce, Christopher M. ;
Holland, Daniel J. ;
Scott, Stuart A. ;
Dennis, John S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (50) :18085-18094
[7]   Review of discrete particle modeling of fluidized beds [J].
Deen, N. G. ;
Annaland, M. Van Sint ;
Van der Hoef, M. A. ;
Kuipers, J. A. M. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :28-44
[8]   Modelling particle contacts in distinct element simulations - Linear and non-linear approach [J].
Di Maio, FP ;
Di Renzo, A .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2005, 83 (A11) :1287-1297
[9]   An Exact Method for Determining Local Solid Fractions in Discrete Element Method Simulations [J].
Freireich, Ben ;
Kodam, Madhusudhan ;
Wassgren, Carl .
AICHE JOURNAL, 2010, 56 (12) :3036-3048
[10]   DEM-CFD modeling of a fluidized bed spray granulator [J].
Fries, L. ;
Antonyuk, S. ;
Heinrich, S. ;
Palzer, S. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (11) :2340-2355