Studies on a damped differential equation with repulsive singularity

被引:14
作者
Cheng, Zhibo [1 ,2 ]
Ren, Jingli [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
关键词
LeraySchauder alternative principle; Green function; repulsive singularity; positive periodic solution; PERIODIC-SOLUTIONS; EXISTENCE;
D O I
10.1002/mma.2659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By an application of LeraySchauder alternative principle, existence results of positive periodic solution are presented for a damped differential equation with repulsive singularity. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:983 / 992
页数:10
相关论文
共 12 条
[1]   Existence theory for single and multiple solutions to singular positone boundary value problems [J].
Agarwal, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :393-414
[2]   Periodic solutions of second order non-autonomous singular dynamical systems [J].
Chu, Jifeng ;
Torres, Pedro J. ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :196-212
[3]   INFINITELY MANY T-PERIODIC SOLUTIONS FOR A PROBLEM ARISING IN NONLINEAR ELASTICITY [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :260-277
[4]   SUBHARMONIC SOLUTIONS FOR SOME 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
FONDA, A ;
MANASEVICH, R ;
ZANOLIN, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) :1294-1311
[5]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[6]   ON PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
LAZER, AC ;
SOLIMINI, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) :109-114
[7]   Periodic solutions for damped differential equations with a weak repulsive singularity [J].
Li, Xiong ;
Zhang, Ziheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2395-2399
[8]  
ORegan D., 1997, Existence Theory for Nonlinear Ordinary Nonlinear Ordinary Dieren- tial Equation
[9]   Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems [J].
Rachunková, I ;
Tvrdy, M ;
Vrkoc, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (02) :445-469
[10]  
Taliaferro S. D., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P897, DOI 10.1016/0362-546X(79)90057-9