The parabolic logistic equation with blow-up initial and boundary values

被引:12
作者
Du, Yihong [1 ]
Peng, Rui [2 ]
Polacik, Peter [3 ]
机构
[1] Univ New England, Dept Math, Sch Sci & Technol, Armidale, NSW 2351, Australia
[2] Jiangsu Normal Univ, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
[3] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2012年 / 118卷
基金
澳大利亚研究理事会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
UNIQUENESS; BEHAVIOR;
D O I
10.1007/s11854-012-0036-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the parabolic logistic equation with blow-up initial and boundary values u(t) - Delta u = a(x, t)u - b(x, t)u(p) in Omega x (0, T), u = infinity on partial derivative Omega x (0, T) boolean OR (Omega) over bar x {0}, where Omega is a smooth bounded domain, T > 0 and p > 1 are constants, and a and b are continuous functions, b > 0 in Omega x [0, T) and b(x, T) = 0. We study the existence and uniqueness of positive solutions and their asymptotic behavior near the parabolic boundary. We show that under the extra condition that b(x, t) = c(T - t)(theta)d(x, partial derivative Omega)(beta) on Omega x [0, T) for some constants c > 0, theta > 0, and beta > -2, such a solution stays bounded in any compact subset of Omega as t increases to T, and hence solves the equation up to t = T.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 12 条
[1]  
Al Sayed W., 2008, NOTIONS SOLUTION NON, P1
[2]  
Al Sayed W, 2009, ADV NONLINEAR STUD, V9, P149
[3]  
BANDLE C, 1994, CR ACAD SCI I-MATH, V318, P455
[4]   Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights [J].
Chuaqui, M ;
Cortazar, C ;
Elgueta, M ;
Garcia-Melian, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (04) :653-662
[5]  
Du Y., 2006, Maximum Principles and Applications, V2
[6]  
Du YH, 2006, DISCRETE CONT DYN-A, V14, P1
[7]  
Du YH, 2004, DIFFER INTEGRAL EQU, V17, P819
[8]   THE PERIODIC LOGISTIC EQUATION WITH SPATIAL AND TEMPORAL DEGENERACIES [J].
Du, Yihong ;
Peng, Rui .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) :6039-6070
[9]   Existence and uniqueness results for large solutions of general nonlinear elliptic equations [J].
Marcus, M ;
Véron, L .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (04) :637-652
[10]  
Marcus N, 1998, ARCH RATION MECH AN, V144, P201