Drifting Impact Oscillator With a New Model of the Progression Phase

被引:26
作者
Ajibose, Olusegun K. [1 ]
Wiercigroch, Marian [1 ]
Pavlovskaia, Ekaterina [1 ]
Akisanya, Alfred R. [1 ]
Karolyi, Gyoerygy [2 ]
机构
[1] Univ Aberdeen, Sch Engn, Ctr Appl Dynam Res, Aberdeen AB24 UE, Scotland
[2] Budapest Univ Technol & Econ, Dept Struct Mech, H-1111 Budapest, Hungary
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2012年 / 79卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
INDENTATION; FORCE;
D O I
10.1115/1.4006379
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, a new model of the progression phase of a drifting oscillator is proposed. This is to account more accurately for the penetration of an impactor through elasto-plastic solids under a combination of a static and a harmonic excitation. First, the dynamic response of the semi-infinite elasto-plastic medium subjected to repeated impacts by a rigid impactor with conical or spherical contacting surfaces is considered in order to formulate the relevant force-penetration relationship during the loading and unloading phases of the contact. These relationships are then used to develop a physical and mathematical model of a new drifting oscillator, where the time histories of the progression through the medium include both the loading and unloading phases. A nonlinear dynamic analysis of the system was performed and it confirms that the maximum progressive motion of the oscillator occurs when the system exhibits period one motion. The dynamic response for both contact geometries (conical or spherical) show a topological similarity for a range of the static loads. [DOI: 10.1115/1.4006379]
引用
收藏
页数:9
相关论文
共 27 条
[1]   Global and local dynamics of drifting oscillator for different contact force models [J].
Ajibose, O. K. ;
Wiercigroch, M. ;
Pavlovskaia, E. ;
Akisanya, A. R. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (09) :850-858
[2]  
[Anonymous], 2009, LANG TECHN COMP
[3]   Experimental and numerical study of a new resonance hammer drilling model with drift [J].
Franca, LFP ;
Weber, HI .
CHAOS SOLITONS & FRACTALS, 2004, 21 (04) :789-801
[4]  
Hertz H., 1882, J REINE ANGEW MATH, V1882, P156, DOI [10.1515/crll.1882.92.156, DOI 10.1515/CRLL.1882.92.156]
[5]  
Hill R., 1950, The Mathematical Theory of Plasticity
[6]   COEFFICIENT OF RESTITUTION INTERPRETED AS DAMPING IN VIBROIMPACT [J].
HUNT, KH ;
CROSSLEY, FRE .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1975, 42 (02) :440-445
[7]  
Johnson K. L., 1987, CONTACT MECH
[8]   CORRELATION OF INDENTATION EXPERIMENTS [J].
JOHNSON, KL .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1970, 18 (02) :115-&
[9]  
Kick F., 1885, Das Gesetz der Proportionalem Widerstand und Seine Anwendung
[10]   Dry friction model of percussive drilling [J].
Krivtsov, AM ;
Wiercigroch, M .
MECCANICA, 1999, 34 (06) :425-435