Capacities and Hausdorff measures on metric spaces

被引:4
作者
Karak, Nijjwal [1 ]
Koskela, Pekka [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
来源
REVISTA MATEMATICA COMPLUTENSE | 2015年 / 28卷 / 03期
基金
芬兰科学院;
关键词
Capacity; Generalized Hausdorff measure; Poincare inequality; SOBOLEV SPACES;
D O I
10.1007/s13163-015-0174-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show that in a Q-doubling space , that supports a Q-Poincar, inequality and satisfies a chain condition, sets of Q-capacity zero have generalized Hausdorff h-measure zero for h(t) = log(1-Q-epsilon) (1/t).
引用
收藏
页码:733 / 740
页数:8
相关论文
共 15 条
[1]  
Adams D., 1996, GRUNDLEHREN MATH WIS, V314
[2]  
[Anonymous], 1998, Cambridge Mathematical Library
[3]  
[Anonymous], 1969, Geometric Measure Theory, V153
[4]   Orlicz capacities and Hausdorff measures on metric spaces [J].
Björn, J ;
Onninen, J .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (01) :131-146
[5]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[6]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[7]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[8]  
Heinonen J., 2006, NONLINEAR POTENTIAL
[9]   Lebesgue points via the Poincar, inequality [J].
Karak, Nijjwal ;
Koskela, Pekka .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) :1697-1706
[10]   The Poincare inequality is an open ended condition [J].
Keith, Stephen ;
Zhong, Xiao .
ANNALS OF MATHEMATICS, 2008, 167 (02) :575-599