New results on Magnetic Properties of Tin-Ferrite Nanoparticles

被引:35
作者
Elmoussaoui, H. [1 ,2 ]
Hamedoun, M. [1 ]
Mounkachi, O. [1 ]
Benyoussef, A. [1 ,2 ,3 ]
Masrour, R. [4 ]
Hlil, E. K. [5 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Mohammed V Agdal Univ, LMPHE URAC 12, Fac Sci, Rabat, Morocco
[3] Hassan II Acad Sci & Technol, Rabat, Morocco
[4] Cady Ayyed Univ, Natl Sch Appl Sci, Lab Mat Proc Environm & Qual, Safi, Morocco
[5] CNRS, Lab Cristallog, F-38042 Grenoble, France
关键词
Tin ferrites; Nanoparticles; Blocking temperature; Superparamagnetism; CHEMISTRY;
D O I
10.1007/s10948-012-1547-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents new physical properties of nanocrystalline SnFe2O4 ferrites, synthesized by co-precipitation method. Magnetization measurement indicates superparamagnetic behavior; the blocking temperature is about 300 K. We performed X-ray diffraction, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Energy Dispersive Spectroscopy (EDS), UV-visible measurement, superconducting quantum interference device (SQUID) and zero-field-cooled (ZFC)/field-cooled (FC) measurements. TEM images show the high crystallinity and grain size of ferrite nanocrystals. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is a partially inverse spinel. The obtained UV-vis data were used to calculate the energy band gap (3.82 eV) of nanocrystalline SnFe2O4. On the other hand the magnetic properties of the samples; saturation magnetization (M-s) and coercive field (H-c) were determined using a superconducting quantum interference device (SQUID).
引用
收藏
页码:1995 / 2002
页数:8
相关论文
共 25 条
[11]   Facile Synthesis and Characterization of Cobalt Ferrite Nanocrystals via a Simple Reduction-Oxidation Route [J].
Gu, Zhijun ;
Xiang, Xu ;
Fan, Guoli ;
Li, Feng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (47) :18459-18466
[12]   Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals [J].
Hyeon, T ;
Chung, Y ;
Park, J ;
Lee, SS ;
Kim, YW ;
Park, BH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (27) :6831-6833
[13]   MAGNETIZATION, CURIE-TEMPERATURE AND Y-K ANGLE STUDIES OF CU SUBSTITUTED AND NON SUBSTITUTED NI-ZN MIXED FERRITES [J].
JOSHI, GK ;
KHOT, AY ;
SAWANT, SR .
SOLID STATE COMMUNICATIONS, 1988, 65 (12) :1593-1595
[14]   THEORY OF THE STRUCTURE OF FERROMAGNETIC DOMAINS IN FILMS AND SMALL PARTICLES [J].
KITTEL, C .
PHYSICAL REVIEW, 1946, 70 (11-1) :965-971
[15]  
Liu FX, 2000, PHYS STATUS SOLIDI A, V179, P437, DOI 10.1002/1521-396X(200006)179:2<437::AID-PSSA437>3.0.CO
[16]  
2-D
[17]   Structure and magnetic properties of SnFe2O4 nanoparticles [J].
Liu, FX ;
Li, TZ ;
Zheng, HG .
PHYSICS LETTERS A, 2004, 323 (3-4) :305-309
[18]   Raman and Fourier-transform infrared photoacoustic spectra of granular ZnO2 [J].
Liu, FX ;
Yang, JL ;
Zhao, TP .
PHYSICAL REVIEW B, 1997, 55 (14) :8847-8851
[19]  
Moghaddam AB, 2008, INT J ELECTROCHEM SC, V3, P291
[20]   One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles [J].
Park, J ;
Lee, E ;
Hwang, NM ;
Kang, MS ;
Kim, SC ;
Hwang, Y ;
Park, JG ;
Noh, HJ ;
Kini, JY ;
Park, JH ;
Hyeon, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (19) :2872-2877