Multiplicity and boundedness of solutions for quasilinear elliptic equations on Heisenberg group

被引:3
作者
Jia, Gao [1 ]
Zhang, Long-jie [1 ]
Chen, Jie [1 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear elliptic equation; variational method; nonsmooth critical point theory; Heisenberg group; CRITICAL-POINT THEORY; EXISTENCE;
D O I
10.1186/s13661-015-0392-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of quasilinear elliptic equations on Heisenberg group by using the nonsmooth critical point theory. Under some weaker assumptions, the multiplicity and boundedness of solutions for these equations are obtained.
引用
收藏
页数:15
相关论文
共 22 条
[1]  
[Anonymous], TOP METH NONLINEAR A
[2]  
[Anonymous], TOPOLOGICAL METHODS
[3]   Multiplicity of solutions for quasilinear elliptic equations in RN [J].
Aouaoui, Sami .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :639-648
[4]   Existence of critical points for some noncoercive functionals [J].
Arcoya, D ;
Boccardo, L ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04) :437-457
[5]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[6]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[9]  
BREZIS H, 1978, CR ACAD SCI A MATH, V287, P113
[10]  
Canino A., 1995, Topol. Methods Nonlinear Anal, V6, P357, DOI 10.12775/TMNA.1995.050