Antishocks in the ASEP with open boundaries conditioned on low current

被引:11
作者
Belitsky, V. [1 ]
Schuetz, G. M. [2 ,3 ]
机构
[1] Univ Sao Paulo, Inst Matemat Estat, BR-05508090 Sao Paulo, Brazil
[2] Forschungszentrum Julich GmbH, Inst Complex Syst II Theoret Soft Matter & Biophy, D-52425 Julich, Germany
[3] Univ Bonn, Interdisziplinares Zentrum Komplexe Syst, D-53119 Bonn, Germany
基金
巴西圣保罗研究基金会;
关键词
EXCLUSION MODEL; LARGE DEVIATION; MICROSCOPIC STRUCTURE; PHASE-TRANSITIONS; STEADY-STATE; SYMMETRY; DUALITY; SYSTEMS;
D O I
10.1088/1751-8113/46/29/295004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time evolution of the ASEP on a finite lattice with L sites and open boundaries, conditioned on an atypically low current up to a finite time t. By an exact computation, we show that for a one-parameter family of boundary densities and a special value of the conditioned current, an initial product measure with an antishock at site k evolves into a convex combination of such antishocks at sites k'. The weights p(k', t vertical bar k, 0) are shown to be the transition probabilities of simple biased random walk with reflecting boundaries. We compute explicitly these transition rates. Our result implies that the antishock remains microscopically stable under the locally conditioned dynamics.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Hydrodynamics and Hydrostatics for a Class of Asymmetric Particle Systems with Open Boundaries [J].
Bahadoran, C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (01) :1-24
[2]   Random Walk of Second Class Particles in Product Shock Measures [J].
Balazs, Marton ;
Farkas, Gyoergy ;
Kovacs, Peter ;
Rakos, Attila .
JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (02) :252-279
[3]   Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) :93-111
[4]  
Belitsky V, 2002, EL J PROB, V7, P1
[5]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[6]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[7]   Distribution of current in nonequilibrium diffusive systems and phase transitions [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW E, 2005, 72 (06)
[8]   Current large deviations for asymmetric exclusion processes with open boundaries [J].
Bodineau, T ;
Derrida, B .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (02) :277-300
[9]  
Borodin A., 2012, ARXIV12075035MATHPR
[10]   Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models [J].
Crampe, N. ;
Ragoucy, E. ;
Simon, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)