Muckenhoupt-Wheeden conjectures for fractional integral operators

被引:0
作者
Sawano, Yoshihiro [1 ]
Sugano, Satoko [2 ]
Tanaka, Hitoshi [3 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
[2] Kobe City Coll Technol, Nishi Ku, 8-3 Gakuen Higashimachi, Kobe, Hyogo 6512194, Japan
[3] Tsukuba Univ Technol, Natl Univ Corp, Res & Support Ctr Higher Educ Hearing & Visually, Kasuga 4-12-7, Tsukuba, Ibaraki 3058521, Japan
基金
日本学术振兴会;
关键词
Fractional integral operator; Fractional maximal operator; Muckenhoupt-Wheeden conjecture; Weighted inequalities; MAXIMAL OPERATORS; INEQUALITIES; SPACES;
D O I
10.1016/j.jmaa.2016.11.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Muckenhoupt-Wheeden conjecture is disproved for fractional integral operator. Both the strong (p,p) and the weak (p,p) type conjectures are proved to be false. The arguments rely upon a property of the characteristic function of an approximating sequence of the Cantor set. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:456 / 463
页数:8
相关论文
共 13 条
  • [1] [Anonymous], 2014, ARXIV14124157
  • [2] [Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
  • [3] Carro MJ, 2005, INDIANA U MATH J, V54, P627
  • [4] Cruz-Uribe D., 2016, ADV COURSES IN PRESS
  • [5] Logarithmic bump conditions and the two-weight boundedness of Calderon-Zygmund operators
    Cruz-Uribe, David
    Reznikov, Alexander
    Volberg, Alexander
    [J]. ADVANCES IN MATHEMATICS, 2014, 255 : 706 - 729
  • [6] A Fractional Muckenhoupt-Wheeden Theorem and its Consequences
    Cruz-Uribe, David
    Moen, Kabe
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (03) : 421 - 446
  • [7] Lacey M., 2012, ARXIV09113437
  • [8] Reguera MC, 2013, P AM MATH SOC, V141, P1705
  • [9] Reguera MC, 2012, MATH RES LETT, V19, P1
  • [10] GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND FRACTIONAL MAXIMAL OPERATORS IN THE FRAMEWORK OF MORREY SPACES
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6481 - 6503