Type-II micro-comb generation in a filter-driven four wave mixing laser [Invited]

被引:31
作者
Bao, Hualong [1 ]
Cooper, Andrew [1 ]
Chu, Sai T. [2 ]
Moss, Dave J. [3 ]
Morandotti, Roberto [4 ,5 ,6 ]
Little, Brent E. [7 ]
Peccianti, Marco [1 ]
Pasquazi, Alessia [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Emergent Photon Epic Lab, Brighton BN1 9QH, E Sussex, England
[2] City Univ Hong Kong, Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China
[3] Swinburne Univ Technol, Ctr Microphoton, Hawthorn, Vic 3122, Australia
[4] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[6] Natl Res Univ Informat Technol Mech & Opt, St Petersburg, Russia
[7] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
OPTICAL FREQUENCY COMB; ENTANGLED QUANTUM STATES; MODE-LOCKED LASER; SILICON-NITRIDE; MICRORESONATOR; RESONATOR; DYNAMICS; SOLITONS;
D O I
10.1364/PRJ.6.000B67
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrate the generation of highly coherent Type-II micro-combs based on a micro-resonator nested in a fiber cavity loop, known as the filter-driven four wave mixing (FD-FWM) laser scheme. In this system, the frequency spacing of the comb can be adjusted to integer multiples of the free-spectral range (FSR) of the nested micro-resonator by properly tuning the fiber cavity length. Sub-comb lines with single FSR spacing around the primary comb lines can be generated. Such a spectral emission is known as a "Type-II comb." Our system achieves a fully coherent output. This behavior is verified by numerical simulations. This study represents an important step forward in controlling and manipulating the dynamics of an FD-FWM laser.
引用
收藏
页码:B67 / B73
页数:7
相关论文
共 54 条
[1]   Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines [J].
Bao, Changjing ;
Liao, Peicheng ;
Kordts, Arne ;
Zhang, Lin ;
Karpov, Maxim ;
Pfeiffer, Martin H. P. ;
Cao, Yinwen ;
Yan, Yan ;
Almaiman, Ahmed ;
Xie, Guodong ;
Mohajerin-Ariaei, Amirhossein ;
Li, Long ;
Ziyadi, Morteza ;
Wilkinson, Steven R. ;
Tur, Moshe ;
Kippenberg, Tobias J. ;
Willner, Alan E. .
OPTICS LETTERS, 2017, 42 (03) :595-598
[2]   Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator [J].
Bao, Chengying ;
Jaramillo-Villegas, Jose A. ;
Xuan, Yi ;
Leaird, Daniel E. ;
Qi, Minghao ;
Weiner, Andrew M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)
[3]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[4]   Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators [J].
Chembo, Yanne K. ;
Strekalov, Dmitry V. ;
Yu, Nan .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[5]   Universal scaling laws of Kerr frequency combs [J].
Coen, Stephane ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (11) :1790-1792
[6]   Routes to spatiotemporal chaos in Kerr optical frequency combs [J].
Coillet, Aurelien ;
Chembo, Yanne K. .
CHAOS, 2014, 24 (01)
[7]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[8]   Octave Spanning Tunable Frequency Comb from a Microresonator [J].
Del'Haye, P. ;
Herr, T. ;
Gavartin, E. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[9]   Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion [J].
Del'Haye, P. ;
Arcizet, O. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2009, 3 (09) :529-533
[10]  
Del'Haye P, 2016, NAT PHOTONICS, V10, P516, DOI [10.1038/NPHOTON.2016.105, 10.1038/nphoton.2016.105]