Biophysical characterization of a binding site for TLQP-21, a naturally occurring peptide which induces resistance to obesity

被引:17
作者
Cassina, V. [1 ]
Torsello, A. [1 ]
Tempestini, A. [1 ]
Salerno, D. [1 ]
Brogioli, D. [1 ]
Tamiazzo, L. [1 ]
Bresciani, E. [1 ]
Martinez, J. [2 ]
Fehrentz, J. A. [2 ]
Verdie, P. [2 ]
Omeljaniuk, R. J. [3 ]
Possenti, R. [4 ,5 ]
Rizzi, L. [1 ]
Locatelli, V. [1 ]
Mantegazza, F. [1 ]
机构
[1] Univ Milano Bicocca, Dept Expt Med, I-20900 Monza, MB, Italy
[2] Univ Montpellier I, CNRS, UMR 5247, Inst Biomol Max Mousseron, F-34093 Montpellier, France
[3] Lakehead Univ, Dept Biol, Thunder Bay, ON P7B 5E1, Canada
[4] Univ Roma Tor Vergata, Dept Med Syst, I-00133 Rome, Italy
[5] CNR IFT, I-00133 Rome, Italy
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2013年 / 1828卷 / 02期
关键词
TLQP-21; VGF; Ligand-receptor; Atomic force Microscopy (AFM); CHO; Fluorescence;
D O I
10.1016/j.bbamem.2012.10.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, we demonstrated that TLQP-21 triggers lipolysis and induces resistance to obesity by reducing fat accumulation [1]. TLQP-21 is a 21 amino acid peptide cleavage product of the neuroprotein VGF and was first identified in rat brain. Although TLQP-21 biological activity and its molecular signaling is under active investigation, a receptor for TLQP-21 has not yet been characterized. We now demonstrate that TLQP-21 stimulates intracellular calcium mobilization in CHO cells. Furthermore, using Atomic Force Microscopy (AFM), we also provide evidence of TLQP-21 binding-site characteristics in CHO cells. AFM was used in force mapping mode equipped with a cantilever suitably functionalized with TLQP-21. Attraction of this functionalized probe to the cell surface was specific and consistent with the biological activity of TLQP-21; by contrast, there was no attraction of a probe functionalized with biologically inactive analogues. We detected interaction of the peptide with the binding-site by scanning the cell surface with the cantilever tip. The attractive force between TLQP-21 and its binding site was measured, statistically analyzed and quantified at approximately 40 pN on average, indicating a single class of binding sites. Furthermore we observed that the distribution of these binding sites on the surface was relatively uniform. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 40 条
[1]  
Bartolomucci A., Corte G.L., Possenti R., Locatelli V., Rigamonti A.E., Torsello A., Bresciani E., Bulgarelli I., Rizzi R., Pavone F., D'Amato F.R., Severini C., Mignogna G., Giorgi A., Schinina M.E., Elia G., Brancia C., Ferri G.L., Conti R., Ciani B., Pascucci T., Dell'Omo G., Muller E.E., Levi A., Moles A., TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity, Proc. Natl. Acad. Sci. U. S. A., 103, pp. 14584-14589, (2006)
[2]  
Trani E., Giorgi A., Canu N., Amadoro G., Rinaldi A.M., Halban P.A., Ferri G.L., Possenti R., Schinina M.E., Levi A., Isolation and characterization of VGF peptides in rat brain. role of PC1/3 and PC2 in the maturation of VGF precursor, J. Neurochem., 81, pp. 565-574, (2002)
[3]  
Van Den Pol A.N., Bina K., Decavel C., Ghosh P., VGF expression in the brain, J. Comp. Neurol., 347, pp. 455-469, (1994)
[4]  
Salton S.R., Ferri G.L., Hahm S., Snyder S.E., Wilson A.J., Possenti R., Levi A., VGF: A novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance, Front. Neuroendocrinol., 21, pp. 199-219, (2000)
[5]  
Levi A., Ferri G.L., Watson E., Possenti R., Salton S.R., Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor, Cell. Mol. Neurobiol., 24, pp. 517-533, (2004)
[6]  
Severini C., Corte G.L., Improta G., Broccardo M., Agostini S., Petrella C., Sibilia V., Pagani F., Guidobono F., Bulgarelli I., Ferri G.L., Brancia C., Rinaldi A.M., Levi A., Possenti R., In vitro and in vivo pharmacological role of TLQP-21, a VGF-derived peptide, in the regulation of rat gastric motor functions, Br. J. Pharmacol., 157, pp. 984-993, (2009)
[7]  
Trani E., Ciotti T., Rinaldi A.M., Canu N., Ferri G.L., Levi A., Possenti R., Tissue-specific processing of the neuroendocrine protein VGF, J. Neurochem., 65, pp. 2441-2449, (1995)
[8]  
Brancia C., Cocco C., D'Amato F., Noli B., Sanna F., Possenti R., Argiolas A., Ferri G.L., Selective expression of TLQP-21 and other VGF peptides in gastric neuroendocrine cells and modulation by feeding, J. Endocrinol., 207, pp. 329-341, (2010)
[9]  
D'Amato F., Noli B., Brancia C., Cocco C., Flore G., Collu M., Nicolussi P., Ferri G.L., Differential distribution of VGF-derived peptides in the adrenal medulla and evidence for their selective modulation, J. Endocrinol., 197, pp. 359-369, (2008)
[10]  
Hahm S., Mizuno T.M., Wu T.J., Wisor J.P., Priesta C.A., Kozak C.A., Boozer C.N., Peng B., McEvoy R.C., Good P., Kelley K.A., Takahashi J.S., Pintar J.E., Roberts J.L., Mobbs C.V., Salton S.R., Targeted deletion of the VGF gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance, Neuron, 23, pp. 537-548, (1999)