Homologous non-isotopic symplectic tori in homotopy rational elliptic surfaces

被引:3
作者
Etgü, T
Park, BD
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1017/S0305004105008790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E(1)(K) denote the homotopy rational elliptic surface corresponding to a knot K in S-3 constructed by R. Fintushel and R. J. Stern. We construct an infinite family of homologous non-isotopic symplectic tori representing a primitive 2-dimensional homology class in E(1)(K) when K is any nontrivial fibred knot in S-3. We also show how these tori can be non-isotopically embedded as homologous symplectic submanifolds in other symplectic 4-manifolds.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 20 条
[1]  
Burde Gerhard, 1985, KNOTS, V5
[2]   Homologous non-isotopic symplectic tori in a K3 surface [J].
Etgü, T ;
Park, BD .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (03) :325-340
[3]   Non-isotopic symplectic tori in the same homology class [J].
Etgü, T ;
Park, BD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (09) :3739-3750
[4]  
ETGU T, NOTE FUNDAMENTAL GRO
[5]  
Fintushel R, 1999, J DIFFER GEOM, V52, P203
[6]   Invariants for Lagrangian tori [J].
Fintushel, R ;
Stern, RJ .
GEOMETRY & TOPOLOGY, 2004, 8 :947-968
[7]   Knots, links, and 4-manifolds [J].
Fintushel, R ;
Stern, RJ .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :363-400
[8]  
FINTUSHEL R, 2004, P CASS FEST GEOM TOP, V7, P311
[9]  
Gompf R. E., 1999, GRAD STUD MATH, V20
[10]   A NEW CONSTRUCTION OF SYMPLECTIC-MANIFOLDS [J].
GOMPF, RE .
ANNALS OF MATHEMATICS, 1995, 142 (03) :527-595