Eulerian Subgraphs and S-connectivity of Graphs

被引:0
作者
Han, Miaomiao [1 ]
Miao, Zhengke [2 ,3 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
[2] Jiangsu Normal Univ, Res Inst Math Sci, Xuzhou 221116, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Eulerian graphs; Collapsible graphs; Nowhere-zero flow; Connectivity;
D O I
10.1016/j.amc.2020.125323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collapsible graphs are introduced by Caltin to study Eulerian subgraphs, and S-group-connectivity is introduced by Jaeger et al. to study flows of graphs. Lai established a connection of those graph classes by showing that collapsible graphs have S-connectivity for group S of order 4. In a survey paper in 2011, Lai et al. conjectured that this property holds for all finite Abelian groups of size at least 4. We prove this conjecture for all groups of even order vertical bar S vertical bar >= 4 and of large odd order vertical bar S vertical bar >= 53. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 9 条
[1]   A REDUCTION METHOD TO FIND SPANNING EULERIAN SUBGRAPHS [J].
CATLIN, PA .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :29-44
[2]  
Hungerford T.W., 1980, ALGEBRA GTM73
[3]   GROUP CONNECTIVITY OF GRAPHS - A NONHOMOGENEOUS ANALOG OF NOWHERE-ZERO FLOW PROPERTIES [J].
JAEGER, F ;
LINIAL, N ;
PAYAN, C ;
TARSI, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (02) :165-182
[4]  
Lai HJ, 1999, J GRAPH THEOR, V30, P277, DOI 10.1002/(SICI)1097-0118(199904)30:4<277::AID-JGT3>3.0.CO
[5]  
2-D
[6]  
Lai HJ, 2000, GRAPH COMBINATOR, V16, P165, DOI 10.1007/s003730050014
[7]   Group Connectivity and Group Colorings of Graphs - A Survey [J].
Lai, Hong-Jian ;
Li, Xiangwen ;
Shao, Yehong ;
Zhan, Mingquan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) :405-434
[8]  
Langhede R., GROUP CONNECTI UNPUB
[9]   GROUP CONNECTIVITY, STRONGLY Zm-CONNECTIVITY, AND EDGE DISJOINT SPANNING TREES [J].
Li, Jiaao ;
Lai, Hong-Jian ;
Luo, Rong .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) :1909-1922