Shape and size-dependent immune response to antigen-carrying nanoparticles

被引:254
作者
Kumar, Sunny [1 ]
Anselmo, Aaron C. [1 ]
Banerjee, Amrita [1 ]
Zakrewsky, Michael [1 ]
Mitragotri, Samir [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Ctr Bioengn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Immune response; Vaccine; Nanoparticles; Shape; Size; Antigen; Morphology; VACCINE DELIVERY-SYSTEMS; MHC CLASS-I; DENDRITIC CELLS; PARTICLE-SIZE; COMPLEMENT ACTIVATION; MOLECULAR-PATTERNS; SURFACE-CHARGE; MICROPARTICLES; PHAGOCYTOSIS; ADJUVANT;
D O I
10.1016/j.jconrel.2015.09.069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The immune system has evolved to recognize and respond to a wide variety of pathogens and produce distinct immune responses against diverse pathogenic structures. Despite remarkable advances, the general mechanisms by which the immune system differentiates the structure of antigen presenting particulates have yet to be elucidated. Using particles of various sizes and shapes, we assessed the role of morphological features of particles in antigen presentation and subsequent processing by the immune cells. Ovalbumin was used as a model antigen. Spherical polystyrene particles of 193 nm and 521 nm diameters were successfully stretched to form rod-shaped particles of 376 nm and 1530 nm in length, respectively. Ovalbumin conjugation to these different particle types was optimized to achieve similar to 50 mu g of ovalbumin conjugation per mg of particle. In vivo immunization study results revealed that small spherical particles (193 nm in diameter) produced a Th1-biased response whereas rod-shaped particles (1530 nm in length) produced a Th2-biased response against ovalbumin. Among different particle types, smaller spherical (193 nm) particles generated stronger Th1 and Th2 immune responses compared to the other particle types. In vitro studies with dendritic cells indicated that spherical (193 nm) and rod (1530 nm) shaped particles were internalized by dendritic cells and delivered ovalbumin. These results provide evidence for size-and shape-dependent modulation of immune responses and this knowledge can be leveraged to rationally design and develop next generation vaccines against a wide range of pathogens. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 56 条
[1]   Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms [J].
Agarwal, Rachit ;
Singh, Vikramjit ;
Jurney, Patrick ;
Shi, Li ;
Sreenivasan, S. V. ;
Roy, Krishnendu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (43) :17247-17252
[2]   Elasticity of Nanopartides Influences Their Blood Circulation, Phagocytosis, Endocytosis, and Targeting [J].
Anselmo, Aaron C. ;
Zhang, Mengwen ;
Kumar, Sunny ;
Vogus, Douglas R. ;
Menegatti, Stefano ;
Helgeson, Matthew E. ;
Mitragotri, Samir .
ACS NANO, 2015, 9 (03) :3169-3177
[3]   Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation [J].
Anselmo, Aaron C. ;
Gilbert, Jonathan B. ;
Kumar, Sunny ;
Gupta, Vivek ;
Cohen, Robert E. ;
Rubner, Michael F. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2015, 199 :29-36
[4]   Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns [J].
Bachmann, Martin F. ;
Jennings, Gary T. .
NATURE REVIEWS IMMUNOLOGY, 2010, 10 (11) :787-796
[5]   Beyond pattern recognition: five immune checkpoints for scaling the microbial threat [J].
Blander, J. Magarian ;
Sander, Leif E. .
NATURE REVIEWS IMMUNOLOGY, 2012, 12 (03) :215-225
[6]   Role of target geometry in phagocytosis [J].
Champion, JA ;
Mitragotri, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) :4930-4934
[7]   Role of particle size in phagocytosis of polymeric microspheres [J].
Champion, Julie A. ;
Walker, Amanda ;
Mitragotri, Samir .
PHARMACEUTICAL RESEARCH, 2008, 25 (08) :1815-1821
[8]   Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) :3-9
[9]   Making polymeric micro- and nanoparticles of complex shapes [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (29) :11901-11904
[10]   Shape Induced Inhibition of Phagocytosis of Polymer Particles [J].
Champion, Julie A. ;
Mitragotri, Samir .
PHARMACEUTICAL RESEARCH, 2009, 26 (01) :244-249