Metabolic engineering of Torulopsis glabrata for malate production

被引:69
|
作者
Chen, Xiulai [1 ,2 ,3 ]
Xu, Guoqiang [1 ,2 ,3 ]
Xu, Nan [1 ,2 ,3 ]
Zou, Wei [1 ,2 ,3 ]
Zhu, Pan [1 ,2 ,3 ]
Liu, Liming [1 ,2 ,3 ]
Chen, Jian [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Lab Food Microbial Mfg Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Malate; Torulopsis glabrata; Metabolic engineering; Genome-scale metabolic model; L-MALIC ACID; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; SCHIZOSACCHAROMYCES-POMBE; CORYNEBACTERIUM-GLUTAMICUM; PYRUVATE PRODUCTION; DICARBOXYLIC-ACIDS; ASPERGILLUS-FLAVUS; YEAST METABOLOMICS; CHEMOSTAT CULTURES;
D O I
10.1016/j.ymben.2013.05.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L-1 malate was accumulated in the engineered strain T.G-PMS, which was about 10 fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 50 条
  • [41] Metabolic engineering for the production of dicarboxylic acids and diamines
    Chae, Tong Un
    Ahn, Jung Ho
    Ko, Yoo-Sung
    Kim, Je Woong
    Lee, Jong An
    Lee, Eon Hui
    Lee, Sang Yup
    METABOLIC ENGINEERING, 2020, 58 : 2 - 16
  • [42] Metabolic engineering and flux analysis of for Corynebacterium glutamicum for L-serine production
    Lai ShuJuan
    Zhang Yun
    Liu ShuWen
    Liang Yong
    Shang XiuLing
    Chai Xin
    Wen TingYi
    SCIENCE CHINA-LIFE SCIENCES, 2012, 55 (04) : 283 - 290
  • [43] Morphology engineering of Aspergillus oryzae for l-malate production
    Chen, Xiulai
    Zhou, Jie
    Ding, Qiang
    Luo, Qiuling
    Liu, Liming
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (10) : 2662 - 2673
  • [44] Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata
    Hua, Q
    Yang, C
    Shimizu, K
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 87 (02) : 206 - 213
  • [45] Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production
    Babaei, Mahsa
    Zamfir, Gheorghe M. Borja
    Chen, Xiao
    Christensen, Hanne Bjerre
    Kristensen, Mette
    Nielsen, Jens
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1978 - 1988
  • [46] Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids
    Chu, Luan Luong
    Tran, Chau T. Bang
    Pham, Duyen T. Kieu
    Nguyen, Hoa T. An
    Nguyen, Mi Ha
    Pham, Nhung Mai
    Nguyen, Anh T. Van
    Phan, Dung T.
    Do, Ha Minh
    Nguyen, Quang Huy
    MOLECULES, 2024, 29 (10):
  • [47] Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals
    Shi, Shuobo
    Zhao, Huimin
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [48] Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production
    Qiu, Mengyue
    Shen, Wei
    Yan, Xiongyin
    He, Qiaoning
    Cai, Dongbo
    Chen, Shouwen
    Wei, Hui
    Knoshaug, Eric P.
    Zhang, Min
    Himmel, Michael E.
    Yang, Shihui
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [49] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Jojima, Toru
    Noburyu, Ryoji
    Sasaki, Miho
    Tajima, Takahisa
    Suda, Masako
    Yukawa, Hideaki
    Inui, Masayuki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (03) : 1165 - 1172
  • [50] Metabolic engineering for the microbial production of marine bioactive compounds
    Mao, Xiangzhao
    Liu, Zhen
    Sun, Jianan
    Lee, Sang Yup
    BIOTECHNOLOGY ADVANCES, 2017, 35 (08) : 1004 - 1021