Metabolic engineering of Torulopsis glabrata for malate production

被引:69
|
作者
Chen, Xiulai [1 ,2 ,3 ]
Xu, Guoqiang [1 ,2 ,3 ]
Xu, Nan [1 ,2 ,3 ]
Zou, Wei [1 ,2 ,3 ]
Zhu, Pan [1 ,2 ,3 ]
Liu, Liming [1 ,2 ,3 ]
Chen, Jian [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Lab Food Microbial Mfg Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Malate; Torulopsis glabrata; Metabolic engineering; Genome-scale metabolic model; L-MALIC ACID; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; SCHIZOSACCHAROMYCES-POMBE; CORYNEBACTERIUM-GLUTAMICUM; PYRUVATE PRODUCTION; DICARBOXYLIC-ACIDS; ASPERGILLUS-FLAVUS; YEAST METABOLOMICS; CHEMOSTAT CULTURES;
D O I
10.1016/j.ymben.2013.05.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L-1 malate was accumulated in the engineered strain T.G-PMS, which was about 10 fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 50 条
  • [1] Metabolic engineering of Torulopsis glabrata for improved pyruvate production
    Wang, QH
    He, P
    Lu, DJ
    Shen, A
    Jiang, N
    ENZYME AND MICROBIAL TECHNOLOGY, 2005, 36 (5-6) : 832 - 839
  • [2] Fumaric Acid Production by Torulopsis glabrata: Engineering the Urea Cycle and the Purine Nucleotide Cycle
    Chen, Xiulai
    Wu, Jing
    Song, Wei
    Zhang, Limei
    Wang, Hongjiang
    Liu, Liming
    BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (01) : 156 - 167
  • [3] Metabolic Engineering of Candida glabrata for Diacetyl Production
    Gao, Xiang
    Xu, Nan
    Li, Shubo
    Liu, Liming
    PLOS ONE, 2014, 9 (03):
  • [4] Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance
    Chen, Xiulai
    Song, Wei
    Gao, Cong
    Qin, Wen
    Luo, Qiuling
    Liu, Jia
    Liu, Liming
    PLOS ONE, 2016, 11 (10):
  • [5] Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering
    Li, Shubo
    Gao, Xiang
    Xu, Nan
    Liu, Liming
    Chen, Jian
    MICROBIAL CELL FACTORIES, 2014, 13
  • [6] Metabolic engineering of Escherichia coli for the production of L-malate from xylose
    Li, Zheng-Jun
    Hong, Peng-Hui
    Da, Yang-Yang
    Li, Liang-Kang
    Stephanopoulos, Gregory
    METABOLIC ENGINEERING, 2018, 48 : 25 - 32
  • [7] Metabolic engineering of Escherichia coli W3110 to produce L-malate
    Dong, Xiaoxiang
    Chen, Xiulai
    Qian, Yuanyuan
    Wang, Yuancai
    Wang, Li
    Qiao, Weihua
    Liu, Liming
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (03) : 656 - 664
  • [8] Proline Enhances Torulopsis glabrata Growth during Hyperosmotic Stress
    Xu, Sha
    Zhou, Jingwen
    Liu, Liming
    Chen, Jian
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2010, 15 (02) : 285 - 292
  • [9] Urea Enhances Cell Growth and Pyruvate Production in Torulopsis glabrata
    Yang, Songxin
    Chen, Xiulai
    Xu, Nan
    Liu, Liming
    Chen, Jian
    BIOTECHNOLOGY PROGRESS, 2014, 30 (01) : 19 - 27
  • [10] Protein and metabolic engineering for the production of organic acids
    Liu, Jingjing
    Li, Jianghua
    Shin, Hyun-dong
    Liu, Long
    Du, Guocheng
    Chen, Jian
    BIORESOURCE TECHNOLOGY, 2017, 239 : 412 - 421