Metabolic engineering of Torulopsis glabrata for malate production

被引:72
作者
Chen, Xiulai [1 ,2 ,3 ]
Xu, Guoqiang [1 ,2 ,3 ]
Xu, Nan [1 ,2 ,3 ]
Zou, Wei [1 ,2 ,3 ]
Zhu, Pan [1 ,2 ,3 ]
Liu, Liming [1 ,2 ,3 ]
Chen, Jian [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Lab Food Microbial Mfg Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Malate; Torulopsis glabrata; Metabolic engineering; Genome-scale metabolic model; L-MALIC ACID; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; SCHIZOSACCHAROMYCES-POMBE; CORYNEBACTERIUM-GLUTAMICUM; PYRUVATE PRODUCTION; DICARBOXYLIC-ACIDS; ASPERGILLUS-FLAVUS; YEAST METABOLOMICS; CHEMOSTAT CULTURES;
D O I
10.1016/j.ymben.2013.05.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L-1 malate was accumulated in the engineered strain T.G-PMS, which was about 10 fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 57 条
[1]   OPTIMIZATION OF L-MALIC ACID PRODUCTION BY ASPERGILLUS-FLAVUS IN A STIRRED FERMENTER [J].
BATTAT, E ;
PELEG, Y ;
BERCOVITZ, A ;
ROKEM, JS ;
GOLDBERG, I .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 37 (11) :1108-1116
[2]   Metabolic engineering of Escherichia coli for the production of succinate from glycerol [J].
Blankschien, Matthew D. ;
Clomburg, JamesM. ;
Gonzalez, Ramon .
METABOLIC ENGINEERING, 2010, 12 (05) :409-419
[3]   Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae [J].
Camarasa, C ;
Bidard, F ;
Bony, M ;
Barre, P ;
Dequin, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (09) :4144-4151
[4]   Leakage-free rapid quenching technique for yeast metabolomics [J].
Canelas, Andre B. ;
Ras, Cor ;
ten Pierick, Angela ;
van Dam, Jan C. ;
Heijnen, Joseph J. ;
Van Gulik, Walter M. .
METABOLOMICS, 2008, 4 (03) :226-239
[5]   Quantitative Evaluation of Intracellular Metabolite Extraction Techniques for Yeast Metabolomics [J].
Canelas, Andre B. ;
ten Pierick, Angela ;
Ras, Cor ;
Seifar, Reza M. ;
van Dam, Jan C. ;
van Gulik, Walter M. ;
Heijnen, Joseph J. .
ANALYTICAL CHEMISTRY, 2009, 81 (17) :7379-7389
[6]   Transport of carboxylic acids in yeasts [J].
Casal, Margarida ;
Paiva, Sandra ;
Queiros, Odilia ;
Soares-Silva, Isabel .
FEMS MICROBIOLOGY REVIEWS, 2008, 32 (06) :974-994
[7]   A COMPARATIVE-STUDY ON THE TRANSPORT OF L(-)MALIC ACID AND OTHER SHORT-CHAIN CARBOXYLIC-ACIDS IN THE YEAST CANDIDA-UTILIS - EVIDENCE FOR A GENERAL ORGANIC-ACID PERMEASE [J].
CASSIO, F ;
LEAO, C .
YEAST, 1993, 9 (07) :743-752
[8]  
CORTEREAL M, 1990, APPL ENVIRON MICROB, V56, P1109
[9]   TRANSPORT OF L(-)MALIC ACID AND OTHER DICARBOXYLIC-ACIDS IN THE YEAST CANDIDA-SPHAERICA [J].
CORTEREAL, M ;
LEAO, C ;
VANUDEN, N .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 31 (5-6) :551-555
[10]   REGULATION OF CARBON METABOLISM IN CHEMOSTAT CULTURES OF SACCHAROMYCES-CEREVISIAE GROWN ON MIXTURES OF GLUCOSE AND ETHANOL [J].
DEJONGGUBBELS, P ;
VANROLLEGHEM, P ;
HEIJNEN, S ;
VANDIJKEN, JP ;
PRONK, JT .
YEAST, 1995, 11 (05) :407-418