Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures

被引:39
作者
Danilov, S. N. [1 ]
Wittmann, B. [1 ]
Olbrich, P. [1 ]
Eder, W. [1 ]
Prettl, W. [1 ]
Golub, L. E. [2 ]
Beregulin, E. V. [2 ]
Kvon, Z. D. [3 ]
Mikhailov, N. N. [3 ]
Dvoretsky, S. A. [3 ]
Shalygin, V. A. [4 ]
Vinh, N. Q. [5 ]
van der Meer, A. F. G. [5 ]
Murdin, B. [6 ]
Ganichev, S. D. [1 ]
机构
[1] Univ Regensburg, Terahertz Ctr, D-93040 Regensburg, Germany
[2] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
[3] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia
[4] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[5] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands
[6] Univ Surrey, Surrey GU2 7XH, England
基金
英国工程与自然科学研究理事会;
关键词
Terahertz waves - Mercury compounds - Gallium arsenide - III-V semiconductors - Narrow band gap semiconductors - Tellurium compounds - Semiconducting gallium arsenide - Semiconductor quantum wells - Continuous wave lasers - Pulsed lasers - Quantum well lasers;
D O I
10.1063/1.3056393
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a fast, room temperature detection scheme for the polarization ellipticity of laser radiation, with a bandwidth that stretches from the infrared to the terahertz range. The device consists of two elements, one in front of the other, that detect the polarization ellipticity and the azimuthal angle of the ellipse. The elements, respectively, utilize the circular photogalvanic effect in a narrow gap semiconductor and the linear photogalvanic effect in a bulk piezoelectric semiconductor. For the former we characterized both a HgTe quantum well and bulk Te, and for the latter, bulk GaAs. In contrast with optical methods we propose is an easy to handle all-electric approach, which is demonstrated by applying a large number of different lasers from low power, continuous wave systems to high power, pulsed sources. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3056393]
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Andrianov A. V., 1988, Soviet Technical Physics Letters, V14, P580
  • [2] ASNIN VM, 1978, JETP LETT+, V28, P74
  • [3] Awschalom DD, 2002, NANOSCI TECHNOL, P147
  • [4] Born M., 2020, Principles of Optics, V7th ed.
  • [5] Dyakonov M, 2008, SPRINGER SER SOLID-S, V157
  • [6] Edwards T., 2000, Gigahertz and Terahertz Technologies for Broadband Communications
  • [7] Ganichev S., 2006, Intense Terahertz Excitation of Semiconductors
  • [8] Subnanosecond ellipticity detector for laser radiation
    Ganichev, S. D.
    Kiermaier, J.
    Weber, W.
    Danilov, S. N.
    Schuh, D.
    Gerl, Ch.
    Wegscheider, W.
    Prettl, W.
    Bougeard, D.
    Abstreiter, G.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (09)
  • [9] All-electric detection of the polarization state of terahertz laser radiation
    Ganichev, S. D.
    Weber, W.
    Kiermaier, J.
    Danilov, S. N.
    Olbrich, P.
    Schuh, D.
    Wegscheider, W.
    Bougeard, D.
    Abstreiter, G.
    Prettl, W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (11)
  • [10] Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents -: art. no. 075328
    Ganichev, SD
    Rössler, U
    Prettl, W
    Ivchenko, EL
    Bel'kov, VV
    Neumann, R
    Brunner, K
    Abstreiter, G
    [J]. PHYSICAL REVIEW B, 2002, 66 (07) : 753281 - 753287