Cathode Material with Nanorod Structure-An Application for Advanced High-Energy and Safe Lithium Batteries

被引:157
作者
Noh, Hyung-Joo [1 ]
Chen, Zonghai [2 ]
Yoon, Chong S. [3 ]
Lu, Jun [2 ]
Amine, Khalil [2 ]
Sun, Yang-Kook [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
coprecipitation; nanorod; concentration gradient; cathode; lithium batteries; LI-ION BATTERIES; ELEVATED-TEMPERATURE; PERFORMANCE; CELLS; CHALLENGES; MN;
D O I
10.1021/cm4006772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed a novel cathode material based on lithium-nickel-manganese-cobalt oxide, where the manganese concentration remains constant throughout the particle, while the nickel concentration decreases linearly and the cobalt concentration increases from the center to the outer surface of the particle. This full concentration gradient material with a fixed manganese composition (FCG-Mn-F) has an average composition of Li[Ni0.60Co0.15Mn0.25]O-2 and is composed of rod-shaped primary particles whose length reaches 2.5 mu m, growing in the radial direction. In cell tests, the FCG-Mn-F material delivered a high capacity of 206 mAh g(-1) with excellent capacity retention of 70.3% after 1000 cycles at 55 degrees C. This cathode material also exhibited outstanding rate capability, good low-temperature performance, and excellent safety, compared to a conventional cathode having the same composition (Li[Ni0.60Co0.15Mn0.25]O-2), where the concentration of the metals is constant across the particles.
引用
收藏
页码:2109 / 2115
页数:7
相关论文
共 24 条
[1]   Biomimetic type morphologies of calcium carbonate grown in absence of additives [J].
Andreassen, Jens-Petter ;
Beck, Ralf ;
Nergaard, Margrethe .
FARADAY DISCUSSIONS, 2012, 159 :247-261
[2]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[3]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[4]   Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation [J].
Cheralathan, K. K. ;
Kang, Na Young ;
Park, Hun Su ;
Lee, You Jin ;
Choi, Won Choon ;
Ko, Young Soo ;
Park, Yong-Ki .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1486-1494
[5]   Structural and electrochemical characterization of the layered LiNi0.5-γMn0.5-γCo2γO2 (0 ≤ 2γ ≤ 1) cathodes [J].
Choi, J ;
Manthiram, A .
SOLID STATE IONICS, 2005, 176 (29-30) :2251-2256
[6]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   Prospective materials and applications for Li secondary batteries [J].
Jeong, Goojin ;
Kim, Young-Ugk ;
Kim, Hansu ;
Kim, Young-Jun ;
Sohn, Hun-Joon .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :1986-2002
[9]   Local-probe studies of degradation of composite LiNi0.8Co0.15Al0.05O2 cathodes in high-power lithium-ion cells [J].
Kostecki, R ;
McLarnon, F .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) :A380-A383
[10]   Structural and electrochemical properties of layered Li[Ni1-2xCoxMnx]O2 (x=0.1-0.3) positive electrode materials for Li-ion batteries [J].
Lee, K.-S. ;
Myung, S.-T. ;
Amine, K. ;
Yashiro, H. ;
Sun, Y.-K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A971-A977