ORBIT: OPTIMIZATION BY RADIAL BASIS FUNCTION INTERPOLATION IN TRUST-REGIONS

被引:155
作者
Wild, Stefan M. [1 ]
Regis, Rommel G. [2 ]
Shoemaker, Christine A. [3 ,4 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] St Josephs Univ, Dept Math & Comp Sci, Philadelphia, PA 19131 USA
[3] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[4] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
关键词
derivative-free optimization; radial basis functions; trust-region methods; nonlinear optimization;
D O I
10.1137/070691814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new derivative-free algorithm, ORBIT, for unconstrained local optimization of computationally expensive functions. A trust-region framework using interpolating Radial Basis Function (RBF) models is employed. The RBF models considered often allow ORBIT to interpolate nonlinear functions using fewer function evaluations than the polynomial models considered by present techniques. Approximation guarantees are obtained by ensuring that a subset of the interpolation points is sufficiently poised for linear interpolation. The RBF property of conditional positive definiteness yields a natural method for adding additional points. We present numerical results on test problems to motivate the use of ORBIT when only a relatively small number of expensive function evaluations are available. Results on two very different application problems, calibration of a watershed model and optimization of a PDE-based bioremediation plan, are also encouraging and support ORBIT's effectiveness on blackbox functions for which no special mathematical structure is known or available.
引用
收藏
页码:3197 / 3219
页数:23
相关论文
共 31 条
[1]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[2]   Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions [J].
Bjorkman, Mattias ;
Holmstrom, Kenneth .
OPTIMIZATION AND ENGINEERING, 2000, 1 (04) :373-397
[3]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[4]   Geometry of interpolation sets in derivative free optimization [J].
Conn, A. R. ;
Scheinberg, K. ;
Vicente, Luis N. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :141-172
[5]  
Conn A.R., 2000, Trust Region Methods, DOI DOI 10.1137/1.9780898719857
[6]  
Conn A. R., 1998, P 7 AIAA USAF NASA I
[7]   Recent progress in unconstrained nonlinear optimization without derivatives [J].
Conn, AR ;
Scheinberg, K ;
Toint, PL .
MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) :397-414
[8]  
COULD NIM, 2003, ACM T MATH SOFTWARE, V29, P373
[9]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[10]   Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems [J].
Fowler, K. R. ;
Reese, J. P. ;
Kees, C. E. ;
Dennis, J. E., Jr. ;
Kelley, C. T. ;
Miller, C. T. ;
Audet, C. ;
Booker, A. J. ;
Couture, G. ;
Darwin, R. W. ;
Farthing, M. W. ;
Finkel, D. E. ;
Gablonsky, J. M. ;
Gray, G. ;
Kolda, T. G. .
ADVANCES IN WATER RESOURCES, 2008, 31 (05) :743-757