Generalized least squares cross-validation in kernel density estimation

被引:4
作者
Zhang, Jin [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
bandwidth; integrated squared error; normal mixture; oversmoothing; undersmoothing; NORMAL REFERENCE BANDWIDTH; SELECTION;
D O I
10.1111/stan.12061
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The kernel density estimation is a popular method in density estimation. The main issue is bandwidth selection, which is a well-known topic and is still frustrating statisticians. A robust least squares cross-validation bandwidth is proposed, which significantly improves the classical least squares cross-validation bandwidth for its variability and undersmoothing, adapts to different kinds of densities, and outperforms the existing bandwidths in statistical literature and software.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
[31]   The influence function of the optimal bandwidth for kernel density estimation [J].
Pak, Ro Jin .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) :602-608
[32]   A Least-squares Approach to Direct Importance Estimation [J].
Kanamori, Takafumi ;
Hido, Shohei ;
Sugiyama, Masashi .
JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 :1391-1445
[33]   Tuning Parameter Estimation in Penalized Least Squares Methodology [J].
Androulakis, E. ;
Koukouvinos, C. ;
Mylona, K. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (09) :1444-1457
[34]   Optimizing Ridge Generalized Least Squares for Structural Equation Modeling [J].
Yang, Miao ;
Yuan, Ke-Hai .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (01) :24-38
[35]   Kernel density estimation for random fields (density estimation for random fields) [J].
Carbon, M ;
Tran, LT ;
Wu, B .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) :115-125
[36]   Explicit solutions for the asymptotically optimal bandwidth in cross-validation [J].
Abadir, Karim M. ;
Lubrano, Michel .
BIOMETRIKA, 2024, 111 (03) :809-823
[37]   Dynamic weighting ensemble classifiers based on cross-validation [J].
Zhu Yu-Quan ;
Ou Ji-Shun ;
Chen Geng ;
Yu Hai-Ping .
NEURAL COMPUTING & APPLICATIONS, 2011, 20 (03) :309-317
[38]   Enhanced Cross-Validation Methods Leveraging Clustering Techniques [J].
Yucelbas, Cuneyt ;
Yucelbas, Sule .
TRAITEMENT DU SIGNAL, 2023, 40 (06) :2649-2660
[39]   An unbiased model comparison test using cross-validation [J].
Desmarais, Bruce A. ;
Harden, Jeffrey J. .
QUALITY & QUANTITY, 2014, 48 (04) :2155-2173
[40]   A cross-validation statistical framework for asymmetric data integration [J].
Tran, Lam ;
He, Kevin ;
Wang, Di ;
Jiang, Hui .
BIOMETRICS, 2023, 79 (02) :1280-1292