Generalized least squares cross-validation in kernel density estimation

被引:4
作者
Zhang, Jin [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
bandwidth; integrated squared error; normal mixture; oversmoothing; undersmoothing; NORMAL REFERENCE BANDWIDTH; SELECTION;
D O I
10.1111/stan.12061
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The kernel density estimation is a popular method in density estimation. The main issue is bandwidth selection, which is a well-known topic and is still frustrating statisticians. A robust least squares cross-validation bandwidth is proposed, which significantly improves the classical least squares cross-validation bandwidth for its variability and undersmoothing, adapts to different kinds of densities, and outperforms the existing bandwidths in statistical literature and software.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
[21]   Variable kernel density estimation [J].
Hazelton, ML .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) :271-284
[22]   On the cross-validation bias due to unsupervised preprocessing [J].
Moscovich, Amit ;
Rosset, Saharon .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) :1474-1502
[23]   A Framework for the Cross-Validation of Categorical Geostatistical Simulations [J].
Juda, Przemyslaw ;
Renard, Philippe ;
Straubhaar, Julien .
EARTH AND SPACE SCIENCE, 2020, 7 (08)
[24]   Estimating the Number of Clusters Using Cross-Validation [J].
Fu, Wei ;
Perry, Patrick O. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (01) :162-173
[25]   Stabilizing the lasso against cross-validation variability [J].
Roberts, S. ;
Nowak, G. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 :198-211
[26]   Analyzing cross-validation for forecasting with structural instability [J].
Hirano, Keisuke ;
Wright, Jonathan H. .
JOURNAL OF ECONOMETRICS, 2022, 226 (01) :139-154
[27]   Estimation of Mixture Models using Cross-Validation Optimization: Implications for Crop Yield Distribution Modeling [J].
Woodard, Joshua D. ;
Sherrick, Bruce J. .
AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2011, 93 (04) :968-982
[28]   TEST FOR HIGH-DIMENSIONAL REGRESSION COEFFICIENTS USING REFITTED CROSS-VALIDATION VARIANCE ESTIMATION [J].
Cui, Hengjian ;
Guo, Wenwen ;
Zhong, Wei .
ANNALS OF STATISTICS, 2018, 46 (03) :958-988
[29]   Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation [J].
Zougab, Nabil ;
Adjabi, Smail ;
Kokonendji, Celestin C. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 :28-38
[30]   Computing AIC for black-box models using generalized degrees of freedom: A comparison with cross-validation [J].
Hauenstein, Severin ;
Wood, Simon N. ;
Dormann, Carsten F. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (05) :1382-1396